Why Normality assumption in linear regressionProbability of x given past data and linear model...

what does しにみえてる mean?

Is a debit card dangerous in my situation?

Could a phylactery of a lich be a mirror or does it have to be a box?

Why zero tolerance on nudity in space?

A starship is travelling at 0.9c and collides with a small rock. Will it leave a clean hole through, or will more happen?

Why isn't there a non-conducting core wire for high-frequency coil applications

How to say "Brexit" in Latin?

What are "industrial chops"?

Avoiding morning and evening handshakes

Intern applicant asking for compensation equivalent to that of permanent employee

Do authors have to be politically correct in article-writing?

Why do no American passenger airlines still operate dedicated cargo flights?

Which one of these password policies is more secure?

Why did the villain in the first Men in Black movie care about Earth's Cockroaches?

Advice for a new journal editor

What is 6÷2×(1+2) =?

Am I a Rude Number?

Why would space fleets be aligned?

Can we use the stored gravitational potential energy of a building to produce power?

Are there any modern advantages of a fire piston?

In Linux what happens if 1000 files in a directory are moved to another location while another 300 files were added to the source directory?

If I delete my router's history can my ISP still provide it to my parents?

Does paint affect EMI ability of enclosure?

Traveling through the asteriod belt?



Why Normality assumption in linear regression


Probability of x given past data and linear model assumptionNormality assumption in linear regressionIs it necessary to plot histogram of dependent variable before running simple linear regression?Assumptions behind simple linear regression modelOLS vs. maximum likelihood under Normal distribution in linear regressionfrom where the error in target variable comes in linear regressionWhy linear regression has assumption on residual but generalized linear model has assumptions on response?Distribution of $(n-2)MSres/sigma^2$ in simple linear regressionHomoscedasticity assumption in simple linear regressionWhat if the Error is Not Normal in Linear Regression?













1












$begingroup$


My question is very simple: why we choose normal as the distribution that error term follows in the assumption of linear regression? Why we don't choose others like uniform, t or whatever?










share|cite|improve this question









$endgroup$












  • $begingroup$
    We don't choose the normal assumption. It just happens to be the case that when the error is normal, the model coefficients exactly follow a normal distribution and an exact F-test can be used to test hypotheses about them.
    $endgroup$
    – AdamO
    1 hour ago












  • $begingroup$
    Because the math works out easily enough that people could use it before modern computers.
    $endgroup$
    – Nat
    1 hour ago


















1












$begingroup$


My question is very simple: why we choose normal as the distribution that error term follows in the assumption of linear regression? Why we don't choose others like uniform, t or whatever?










share|cite|improve this question









$endgroup$












  • $begingroup$
    We don't choose the normal assumption. It just happens to be the case that when the error is normal, the model coefficients exactly follow a normal distribution and an exact F-test can be used to test hypotheses about them.
    $endgroup$
    – AdamO
    1 hour ago












  • $begingroup$
    Because the math works out easily enough that people could use it before modern computers.
    $endgroup$
    – Nat
    1 hour ago
















1












1








1





$begingroup$


My question is very simple: why we choose normal as the distribution that error term follows in the assumption of linear regression? Why we don't choose others like uniform, t or whatever?










share|cite|improve this question









$endgroup$




My question is very simple: why we choose normal as the distribution that error term follows in the assumption of linear regression? Why we don't choose others like uniform, t or whatever?







regression mathematical-statistics normal-distribution error linear






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









Master ShiMaster Shi

161




161












  • $begingroup$
    We don't choose the normal assumption. It just happens to be the case that when the error is normal, the model coefficients exactly follow a normal distribution and an exact F-test can be used to test hypotheses about them.
    $endgroup$
    – AdamO
    1 hour ago












  • $begingroup$
    Because the math works out easily enough that people could use it before modern computers.
    $endgroup$
    – Nat
    1 hour ago




















  • $begingroup$
    We don't choose the normal assumption. It just happens to be the case that when the error is normal, the model coefficients exactly follow a normal distribution and an exact F-test can be used to test hypotheses about them.
    $endgroup$
    – AdamO
    1 hour ago












  • $begingroup$
    Because the math works out easily enough that people could use it before modern computers.
    $endgroup$
    – Nat
    1 hour ago


















$begingroup$
We don't choose the normal assumption. It just happens to be the case that when the error is normal, the model coefficients exactly follow a normal distribution and an exact F-test can be used to test hypotheses about them.
$endgroup$
– AdamO
1 hour ago






$begingroup$
We don't choose the normal assumption. It just happens to be the case that when the error is normal, the model coefficients exactly follow a normal distribution and an exact F-test can be used to test hypotheses about them.
$endgroup$
– AdamO
1 hour ago














$begingroup$
Because the math works out easily enough that people could use it before modern computers.
$endgroup$
– Nat
1 hour ago






$begingroup$
Because the math works out easily enough that people could use it before modern computers.
$endgroup$
– Nat
1 hour ago












1 Answer
1






active

oldest

votes


















4












$begingroup$

You can choose another error distribution; they basically just change the loss function.



This is certainly done.



Laplace (double exponential errors) correspond to least absolute deviations regression/$L_1$ regression (which numerous posts on site discuss). Regressions with t-errors are occasionally used (in some cases because they're more robust to gross errors), though they can have a disadvantage -- the likelihood (and therefore the negative of the loss) can have multiple modes.



Uniform errors correspond to an $L_infty$ loss (minimize the maximum deviation); such regression is sometimes called Chebyshev approximation (though beware, since there's another thing with essentially the same name). Again, this is sometimes done (indeed for simple regression and smallish data sets with bounded errors with constant spread the fit is often easy enough to find by hand, directly on a plot, though in practice you can use linear programming methods, or other algorithms; indeed, $L_infty$ and $L_1$ regression problems are duals of each other, which can lead to sometimes convenient shortcuts for some problems).



Many other choices are possible and quite a few have been used in practice.



[Note that if you have additive, independent, constant-spread errors with a density of the form $k,exp(-c.g(varepsilon))$, maximizing the likelihood will correspond to minimizing $sum_i g(e_i)$, where $e_i$ is the $i$th residual.]






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "65"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f395011%2fwhy-normality-assumption-in-linear-regression%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    You can choose another error distribution; they basically just change the loss function.



    This is certainly done.



    Laplace (double exponential errors) correspond to least absolute deviations regression/$L_1$ regression (which numerous posts on site discuss). Regressions with t-errors are occasionally used (in some cases because they're more robust to gross errors), though they can have a disadvantage -- the likelihood (and therefore the negative of the loss) can have multiple modes.



    Uniform errors correspond to an $L_infty$ loss (minimize the maximum deviation); such regression is sometimes called Chebyshev approximation (though beware, since there's another thing with essentially the same name). Again, this is sometimes done (indeed for simple regression and smallish data sets with bounded errors with constant spread the fit is often easy enough to find by hand, directly on a plot, though in practice you can use linear programming methods, or other algorithms; indeed, $L_infty$ and $L_1$ regression problems are duals of each other, which can lead to sometimes convenient shortcuts for some problems).



    Many other choices are possible and quite a few have been used in practice.



    [Note that if you have additive, independent, constant-spread errors with a density of the form $k,exp(-c.g(varepsilon))$, maximizing the likelihood will correspond to minimizing $sum_i g(e_i)$, where $e_i$ is the $i$th residual.]






    share|cite|improve this answer











    $endgroup$


















      4












      $begingroup$

      You can choose another error distribution; they basically just change the loss function.



      This is certainly done.



      Laplace (double exponential errors) correspond to least absolute deviations regression/$L_1$ regression (which numerous posts on site discuss). Regressions with t-errors are occasionally used (in some cases because they're more robust to gross errors), though they can have a disadvantage -- the likelihood (and therefore the negative of the loss) can have multiple modes.



      Uniform errors correspond to an $L_infty$ loss (minimize the maximum deviation); such regression is sometimes called Chebyshev approximation (though beware, since there's another thing with essentially the same name). Again, this is sometimes done (indeed for simple regression and smallish data sets with bounded errors with constant spread the fit is often easy enough to find by hand, directly on a plot, though in practice you can use linear programming methods, or other algorithms; indeed, $L_infty$ and $L_1$ regression problems are duals of each other, which can lead to sometimes convenient shortcuts for some problems).



      Many other choices are possible and quite a few have been used in practice.



      [Note that if you have additive, independent, constant-spread errors with a density of the form $k,exp(-c.g(varepsilon))$, maximizing the likelihood will correspond to minimizing $sum_i g(e_i)$, where $e_i$ is the $i$th residual.]






      share|cite|improve this answer











      $endgroup$
















        4












        4








        4





        $begingroup$

        You can choose another error distribution; they basically just change the loss function.



        This is certainly done.



        Laplace (double exponential errors) correspond to least absolute deviations regression/$L_1$ regression (which numerous posts on site discuss). Regressions with t-errors are occasionally used (in some cases because they're more robust to gross errors), though they can have a disadvantage -- the likelihood (and therefore the negative of the loss) can have multiple modes.



        Uniform errors correspond to an $L_infty$ loss (minimize the maximum deviation); such regression is sometimes called Chebyshev approximation (though beware, since there's another thing with essentially the same name). Again, this is sometimes done (indeed for simple regression and smallish data sets with bounded errors with constant spread the fit is often easy enough to find by hand, directly on a plot, though in practice you can use linear programming methods, or other algorithms; indeed, $L_infty$ and $L_1$ regression problems are duals of each other, which can lead to sometimes convenient shortcuts for some problems).



        Many other choices are possible and quite a few have been used in practice.



        [Note that if you have additive, independent, constant-spread errors with a density of the form $k,exp(-c.g(varepsilon))$, maximizing the likelihood will correspond to minimizing $sum_i g(e_i)$, where $e_i$ is the $i$th residual.]






        share|cite|improve this answer











        $endgroup$



        You can choose another error distribution; they basically just change the loss function.



        This is certainly done.



        Laplace (double exponential errors) correspond to least absolute deviations regression/$L_1$ regression (which numerous posts on site discuss). Regressions with t-errors are occasionally used (in some cases because they're more robust to gross errors), though they can have a disadvantage -- the likelihood (and therefore the negative of the loss) can have multiple modes.



        Uniform errors correspond to an $L_infty$ loss (minimize the maximum deviation); such regression is sometimes called Chebyshev approximation (though beware, since there's another thing with essentially the same name). Again, this is sometimes done (indeed for simple regression and smallish data sets with bounded errors with constant spread the fit is often easy enough to find by hand, directly on a plot, though in practice you can use linear programming methods, or other algorithms; indeed, $L_infty$ and $L_1$ regression problems are duals of each other, which can lead to sometimes convenient shortcuts for some problems).



        Many other choices are possible and quite a few have been used in practice.



        [Note that if you have additive, independent, constant-spread errors with a density of the form $k,exp(-c.g(varepsilon))$, maximizing the likelihood will correspond to minimizing $sum_i g(e_i)$, where $e_i$ is the $i$th residual.]







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 10 mins ago

























        answered 1 hour ago









        Glen_bGlen_b

        212k22409758




        212k22409758






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f395011%2fwhy-normality-assumption-in-linear-regression%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            ORA-01691 (unable to extend lob segment) even though my tablespace has AUTOEXTEND onORA-01692: unable to...

            Always On Availability groups resolving state after failover - Remote harden of transaction...

            Circunscripción electoral de Guipúzcoa Referencias Menú de navegaciónLas claves del sistema electoral en...