A curious equality of integrals involving the prime counting function?How many primes does this sequence...

What language shall they sing in?

Is there a verb that means to inject with poison?

A Missing Symbol for This Logo

How can I play a serial killer in a party of good PCs?

Current across a wire with zero potential difference

False written accusations not made public - is there law to cover this?

Eww, those bytes are gross

Is a new boolean field better than null reference when a value can be meaningfully absent?

Airplane generations - how does it work?

Has Britain negotiated with any other countries outside the EU in preparation for the exit?

Early credit roll before the end of the film

Why did the villain in the first Men in Black movie care about Earth's Cockroaches?

What happens when the wearer of a Shield of Missile Attraction is behind total cover?

Saint abbreviation

Strange "DuckDuckGo dork" takes me to random website

A curious equality of integrals involving the prime counting function?

Looking for a specific 6502 Assembler

Why do we have to make "peinlich" start with a capital letter and also end with -s in this sentence?

Boss asked me to sign a resignation paper without a date on it along with my new contract

Why did Democrats in the Senate oppose the Born-Alive Abortion Survivors Protection Act (2019 S.130)?

Can you tell from a blurry photo if focus was too close or too far?

What is a good reason for every spaceship to carry a weapon on board?

Why is Agricola named as such?

Why avoid shared user accounts?



A curious equality of integrals involving the prime counting function?


How many primes does this sequence find?Tight bounds on the prime counting functionDirichlet prime counting function?closed form for integrals involving error functiona practical prime counting functionPrime counting functionRestricted equality involving prime numbersPrime counting function formulasProof for a prime number formula involving the prime counting functionProperty of Prime Counting FunctionApproximating the prime counting function













7












$begingroup$


This post discusses the integral,
$$I(k)=int_0^kpi(x)pi(k-x)dx$$



where $pi(x)$ is the prime-counting function. For example,
$$I(13)=int_0^{13}pi(x)pi(13-x)dx = 73$$



Using WolframAlpha, the first 50 values for $k=1,2,3,dots$ are,



$$I(k) = 0, 0, 0, 0, 1, 4, 8, 14, 22, 32, 45, 58, 73, 90, 110, 132, 158, 184, 214, 246, 282, 320, 363, 406, 455, 506, 562, 618, 678, 738, 804, 872, 944, 1018, 1099, 1180, 1269, 1358, 1450, 1544, 1644, 1744, 1852, 1962, 2078, 2196, 2321, 2446, 2581, 2718,dots$$



While trying to find if the above sequence obeyed a pattern, I noticed a rather unexpected relationship:






Q: For all $n>0$, is it true,
$$I(6n+4) - 2,I(6n+5) + I(6n+6) overset{color{red}?}= 0$$




Example, for $n=1,2$, then
$$I(10)-2I(11)+I(12)=32-2*45+58 = 0$$
$$I(16)-2I(17)+I(18)=132-2*158+184= 0$$
and so on.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Note your proposed equation doesn't hold for $n = 0$ as $I(4) = 0$, $I(5) = 1$ and $I(6) = 4$.
    $endgroup$
    – John Omielan
    1 hour ago










  • $begingroup$
    @JohnOmielan: A typo. I meant all $n>0$. I will correct it.
    $endgroup$
    – Tito Piezas III
    1 hour ago










  • $begingroup$
    I have checked to confirm what you're asking is true for $n$ up to $18$. However, I have my doubts it'll always work, partially because it doesn't work for $n = 0$. Also, a similar type condition is that $I(6n) - 2I(6n + 1) + I(6n + 2) = 2$, which holds for $1 le n le 5$, but at $n = 6$, the LHS becomes $0$ instead. If I get a chance, I will investigate your equation to see if I can figure out why it's true for at least the first $18$ values and, more importantly, will it always stay true. Regardless, though, it's an excellent observation you've made, even if it doesn't always hold.
    $endgroup$
    – John Omielan
    46 mins ago












  • $begingroup$
    I checked your result up to $n=533$ (for $n geq 534$, I have problems. Would you be interested by a huge table of $I(k)$ (I was able to generate it up to $k=540$). This is a very interesting problem.
    $endgroup$
    – Claude Leibovici
    28 mins ago












  • $begingroup$
    @ClaudeLeibovici: Thanks for checking, Claude! However, that table would be too huge for MSE. :)
    $endgroup$
    – Tito Piezas III
    25 mins ago
















7












$begingroup$


This post discusses the integral,
$$I(k)=int_0^kpi(x)pi(k-x)dx$$



where $pi(x)$ is the prime-counting function. For example,
$$I(13)=int_0^{13}pi(x)pi(13-x)dx = 73$$



Using WolframAlpha, the first 50 values for $k=1,2,3,dots$ are,



$$I(k) = 0, 0, 0, 0, 1, 4, 8, 14, 22, 32, 45, 58, 73, 90, 110, 132, 158, 184, 214, 246, 282, 320, 363, 406, 455, 506, 562, 618, 678, 738, 804, 872, 944, 1018, 1099, 1180, 1269, 1358, 1450, 1544, 1644, 1744, 1852, 1962, 2078, 2196, 2321, 2446, 2581, 2718,dots$$



While trying to find if the above sequence obeyed a pattern, I noticed a rather unexpected relationship:






Q: For all $n>0$, is it true,
$$I(6n+4) - 2,I(6n+5) + I(6n+6) overset{color{red}?}= 0$$




Example, for $n=1,2$, then
$$I(10)-2I(11)+I(12)=32-2*45+58 = 0$$
$$I(16)-2I(17)+I(18)=132-2*158+184= 0$$
and so on.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Note your proposed equation doesn't hold for $n = 0$ as $I(4) = 0$, $I(5) = 1$ and $I(6) = 4$.
    $endgroup$
    – John Omielan
    1 hour ago










  • $begingroup$
    @JohnOmielan: A typo. I meant all $n>0$. I will correct it.
    $endgroup$
    – Tito Piezas III
    1 hour ago










  • $begingroup$
    I have checked to confirm what you're asking is true for $n$ up to $18$. However, I have my doubts it'll always work, partially because it doesn't work for $n = 0$. Also, a similar type condition is that $I(6n) - 2I(6n + 1) + I(6n + 2) = 2$, which holds for $1 le n le 5$, but at $n = 6$, the LHS becomes $0$ instead. If I get a chance, I will investigate your equation to see if I can figure out why it's true for at least the first $18$ values and, more importantly, will it always stay true. Regardless, though, it's an excellent observation you've made, even if it doesn't always hold.
    $endgroup$
    – John Omielan
    46 mins ago












  • $begingroup$
    I checked your result up to $n=533$ (for $n geq 534$, I have problems. Would you be interested by a huge table of $I(k)$ (I was able to generate it up to $k=540$). This is a very interesting problem.
    $endgroup$
    – Claude Leibovici
    28 mins ago












  • $begingroup$
    @ClaudeLeibovici: Thanks for checking, Claude! However, that table would be too huge for MSE. :)
    $endgroup$
    – Tito Piezas III
    25 mins ago














7












7








7


5



$begingroup$


This post discusses the integral,
$$I(k)=int_0^kpi(x)pi(k-x)dx$$



where $pi(x)$ is the prime-counting function. For example,
$$I(13)=int_0^{13}pi(x)pi(13-x)dx = 73$$



Using WolframAlpha, the first 50 values for $k=1,2,3,dots$ are,



$$I(k) = 0, 0, 0, 0, 1, 4, 8, 14, 22, 32, 45, 58, 73, 90, 110, 132, 158, 184, 214, 246, 282, 320, 363, 406, 455, 506, 562, 618, 678, 738, 804, 872, 944, 1018, 1099, 1180, 1269, 1358, 1450, 1544, 1644, 1744, 1852, 1962, 2078, 2196, 2321, 2446, 2581, 2718,dots$$



While trying to find if the above sequence obeyed a pattern, I noticed a rather unexpected relationship:






Q: For all $n>0$, is it true,
$$I(6n+4) - 2,I(6n+5) + I(6n+6) overset{color{red}?}= 0$$




Example, for $n=1,2$, then
$$I(10)-2I(11)+I(12)=32-2*45+58 = 0$$
$$I(16)-2I(17)+I(18)=132-2*158+184= 0$$
and so on.










share|cite|improve this question











$endgroup$




This post discusses the integral,
$$I(k)=int_0^kpi(x)pi(k-x)dx$$



where $pi(x)$ is the prime-counting function. For example,
$$I(13)=int_0^{13}pi(x)pi(13-x)dx = 73$$



Using WolframAlpha, the first 50 values for $k=1,2,3,dots$ are,



$$I(k) = 0, 0, 0, 0, 1, 4, 8, 14, 22, 32, 45, 58, 73, 90, 110, 132, 158, 184, 214, 246, 282, 320, 363, 406, 455, 506, 562, 618, 678, 738, 804, 872, 944, 1018, 1099, 1180, 1269, 1358, 1450, 1544, 1644, 1744, 1852, 1962, 2078, 2196, 2321, 2446, 2581, 2718,dots$$



While trying to find if the above sequence obeyed a pattern, I noticed a rather unexpected relationship:






Q: For all $n>0$, is it true,
$$I(6n+4) - 2,I(6n+5) + I(6n+6) overset{color{red}?}= 0$$




Example, for $n=1,2$, then
$$I(10)-2I(11)+I(12)=32-2*45+58 = 0$$
$$I(16)-2I(17)+I(18)=132-2*158+184= 0$$
and so on.







integration definite-integrals prime-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 11 mins ago







Tito Piezas III

















asked 1 hour ago









Tito Piezas IIITito Piezas III

27.4k366174




27.4k366174












  • $begingroup$
    Note your proposed equation doesn't hold for $n = 0$ as $I(4) = 0$, $I(5) = 1$ and $I(6) = 4$.
    $endgroup$
    – John Omielan
    1 hour ago










  • $begingroup$
    @JohnOmielan: A typo. I meant all $n>0$. I will correct it.
    $endgroup$
    – Tito Piezas III
    1 hour ago










  • $begingroup$
    I have checked to confirm what you're asking is true for $n$ up to $18$. However, I have my doubts it'll always work, partially because it doesn't work for $n = 0$. Also, a similar type condition is that $I(6n) - 2I(6n + 1) + I(6n + 2) = 2$, which holds for $1 le n le 5$, but at $n = 6$, the LHS becomes $0$ instead. If I get a chance, I will investigate your equation to see if I can figure out why it's true for at least the first $18$ values and, more importantly, will it always stay true. Regardless, though, it's an excellent observation you've made, even if it doesn't always hold.
    $endgroup$
    – John Omielan
    46 mins ago












  • $begingroup$
    I checked your result up to $n=533$ (for $n geq 534$, I have problems. Would you be interested by a huge table of $I(k)$ (I was able to generate it up to $k=540$). This is a very interesting problem.
    $endgroup$
    – Claude Leibovici
    28 mins ago












  • $begingroup$
    @ClaudeLeibovici: Thanks for checking, Claude! However, that table would be too huge for MSE. :)
    $endgroup$
    – Tito Piezas III
    25 mins ago


















  • $begingroup$
    Note your proposed equation doesn't hold for $n = 0$ as $I(4) = 0$, $I(5) = 1$ and $I(6) = 4$.
    $endgroup$
    – John Omielan
    1 hour ago










  • $begingroup$
    @JohnOmielan: A typo. I meant all $n>0$. I will correct it.
    $endgroup$
    – Tito Piezas III
    1 hour ago










  • $begingroup$
    I have checked to confirm what you're asking is true for $n$ up to $18$. However, I have my doubts it'll always work, partially because it doesn't work for $n = 0$. Also, a similar type condition is that $I(6n) - 2I(6n + 1) + I(6n + 2) = 2$, which holds for $1 le n le 5$, but at $n = 6$, the LHS becomes $0$ instead. If I get a chance, I will investigate your equation to see if I can figure out why it's true for at least the first $18$ values and, more importantly, will it always stay true. Regardless, though, it's an excellent observation you've made, even if it doesn't always hold.
    $endgroup$
    – John Omielan
    46 mins ago












  • $begingroup$
    I checked your result up to $n=533$ (for $n geq 534$, I have problems. Would you be interested by a huge table of $I(k)$ (I was able to generate it up to $k=540$). This is a very interesting problem.
    $endgroup$
    – Claude Leibovici
    28 mins ago












  • $begingroup$
    @ClaudeLeibovici: Thanks for checking, Claude! However, that table would be too huge for MSE. :)
    $endgroup$
    – Tito Piezas III
    25 mins ago
















$begingroup$
Note your proposed equation doesn't hold for $n = 0$ as $I(4) = 0$, $I(5) = 1$ and $I(6) = 4$.
$endgroup$
– John Omielan
1 hour ago




$begingroup$
Note your proposed equation doesn't hold for $n = 0$ as $I(4) = 0$, $I(5) = 1$ and $I(6) = 4$.
$endgroup$
– John Omielan
1 hour ago












$begingroup$
@JohnOmielan: A typo. I meant all $n>0$. I will correct it.
$endgroup$
– Tito Piezas III
1 hour ago




$begingroup$
@JohnOmielan: A typo. I meant all $n>0$. I will correct it.
$endgroup$
– Tito Piezas III
1 hour ago












$begingroup$
I have checked to confirm what you're asking is true for $n$ up to $18$. However, I have my doubts it'll always work, partially because it doesn't work for $n = 0$. Also, a similar type condition is that $I(6n) - 2I(6n + 1) + I(6n + 2) = 2$, which holds for $1 le n le 5$, but at $n = 6$, the LHS becomes $0$ instead. If I get a chance, I will investigate your equation to see if I can figure out why it's true for at least the first $18$ values and, more importantly, will it always stay true. Regardless, though, it's an excellent observation you've made, even if it doesn't always hold.
$endgroup$
– John Omielan
46 mins ago






$begingroup$
I have checked to confirm what you're asking is true for $n$ up to $18$. However, I have my doubts it'll always work, partially because it doesn't work for $n = 0$. Also, a similar type condition is that $I(6n) - 2I(6n + 1) + I(6n + 2) = 2$, which holds for $1 le n le 5$, but at $n = 6$, the LHS becomes $0$ instead. If I get a chance, I will investigate your equation to see if I can figure out why it's true for at least the first $18$ values and, more importantly, will it always stay true. Regardless, though, it's an excellent observation you've made, even if it doesn't always hold.
$endgroup$
– John Omielan
46 mins ago














$begingroup$
I checked your result up to $n=533$ (for $n geq 534$, I have problems. Would you be interested by a huge table of $I(k)$ (I was able to generate it up to $k=540$). This is a very interesting problem.
$endgroup$
– Claude Leibovici
28 mins ago






$begingroup$
I checked your result up to $n=533$ (for $n geq 534$, I have problems. Would you be interested by a huge table of $I(k)$ (I was able to generate it up to $k=540$). This is a very interesting problem.
$endgroup$
– Claude Leibovici
28 mins ago














$begingroup$
@ClaudeLeibovici: Thanks for checking, Claude! However, that table would be too huge for MSE. :)
$endgroup$
– Tito Piezas III
25 mins ago




$begingroup$
@ClaudeLeibovici: Thanks for checking, Claude! However, that table would be too huge for MSE. :)
$endgroup$
– Tito Piezas III
25 mins ago










1 Answer
1






active

oldest

votes


















7












$begingroup$

The answer is yes. Sketch of solution:
$$
I(k) = int_0^k sum_{ple x} sum_{qle k-x} 1 ,dx = sum_p sum_{qle k-p} int_p^{k-q} dx = sum_p sum_{qle k-p} (k-(p+q)) = sum_{mle k} r(m)(k-m),
$$

where $r(m)$ is the number of ways of writing $m$ as the sum of two primes. Then
$$
I(6n+6)-2I(6n+5)+I(6n+4) = sum_{mle 6n+4} r(m)big( (6n+6-m)-2(6n+5-m)+(6m+4-m) big) + r(6n+5) = \0 + r(6n+5);
$$

and $r(6n+5)=0$ for every $nge1$, since the only way the odd integer $6n+5$ can be the sum of two primes is $6n+5=2+(6n+3)$, but $6n+3=3(2n+1)$ is always composite when $nge1$.



The same argument gives $I(6n+2)-2I(6n+1)+I(6n) = r(6n+1)$, which is $2$ if $6n-1$ is prime and $0$ otherwise; this is why (as observed by John Omielan) it equals $2$ for $1le nle 5$ but $0$ for $n=6$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    MSE never ceases to amaze me how fast some people can figure out the answer.
    $endgroup$
    – Tito Piezas III
    13 mins ago










  • $begingroup$
    Greg, do you know how to address Ultradark's question regarding when $I(k)$ is prime?
    $endgroup$
    – Tito Piezas III
    3 mins ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3128367%2fa-curious-equality-of-integrals-involving-the-prime-counting-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









7












$begingroup$

The answer is yes. Sketch of solution:
$$
I(k) = int_0^k sum_{ple x} sum_{qle k-x} 1 ,dx = sum_p sum_{qle k-p} int_p^{k-q} dx = sum_p sum_{qle k-p} (k-(p+q)) = sum_{mle k} r(m)(k-m),
$$

where $r(m)$ is the number of ways of writing $m$ as the sum of two primes. Then
$$
I(6n+6)-2I(6n+5)+I(6n+4) = sum_{mle 6n+4} r(m)big( (6n+6-m)-2(6n+5-m)+(6m+4-m) big) + r(6n+5) = \0 + r(6n+5);
$$

and $r(6n+5)=0$ for every $nge1$, since the only way the odd integer $6n+5$ can be the sum of two primes is $6n+5=2+(6n+3)$, but $6n+3=3(2n+1)$ is always composite when $nge1$.



The same argument gives $I(6n+2)-2I(6n+1)+I(6n) = r(6n+1)$, which is $2$ if $6n-1$ is prime and $0$ otherwise; this is why (as observed by John Omielan) it equals $2$ for $1le nle 5$ but $0$ for $n=6$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    MSE never ceases to amaze me how fast some people can figure out the answer.
    $endgroup$
    – Tito Piezas III
    13 mins ago










  • $begingroup$
    Greg, do you know how to address Ultradark's question regarding when $I(k)$ is prime?
    $endgroup$
    – Tito Piezas III
    3 mins ago
















7












$begingroup$

The answer is yes. Sketch of solution:
$$
I(k) = int_0^k sum_{ple x} sum_{qle k-x} 1 ,dx = sum_p sum_{qle k-p} int_p^{k-q} dx = sum_p sum_{qle k-p} (k-(p+q)) = sum_{mle k} r(m)(k-m),
$$

where $r(m)$ is the number of ways of writing $m$ as the sum of two primes. Then
$$
I(6n+6)-2I(6n+5)+I(6n+4) = sum_{mle 6n+4} r(m)big( (6n+6-m)-2(6n+5-m)+(6m+4-m) big) + r(6n+5) = \0 + r(6n+5);
$$

and $r(6n+5)=0$ for every $nge1$, since the only way the odd integer $6n+5$ can be the sum of two primes is $6n+5=2+(6n+3)$, but $6n+3=3(2n+1)$ is always composite when $nge1$.



The same argument gives $I(6n+2)-2I(6n+1)+I(6n) = r(6n+1)$, which is $2$ if $6n-1$ is prime and $0$ otherwise; this is why (as observed by John Omielan) it equals $2$ for $1le nle 5$ but $0$ for $n=6$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    MSE never ceases to amaze me how fast some people can figure out the answer.
    $endgroup$
    – Tito Piezas III
    13 mins ago










  • $begingroup$
    Greg, do you know how to address Ultradark's question regarding when $I(k)$ is prime?
    $endgroup$
    – Tito Piezas III
    3 mins ago














7












7








7





$begingroup$

The answer is yes. Sketch of solution:
$$
I(k) = int_0^k sum_{ple x} sum_{qle k-x} 1 ,dx = sum_p sum_{qle k-p} int_p^{k-q} dx = sum_p sum_{qle k-p} (k-(p+q)) = sum_{mle k} r(m)(k-m),
$$

where $r(m)$ is the number of ways of writing $m$ as the sum of two primes. Then
$$
I(6n+6)-2I(6n+5)+I(6n+4) = sum_{mle 6n+4} r(m)big( (6n+6-m)-2(6n+5-m)+(6m+4-m) big) + r(6n+5) = \0 + r(6n+5);
$$

and $r(6n+5)=0$ for every $nge1$, since the only way the odd integer $6n+5$ can be the sum of two primes is $6n+5=2+(6n+3)$, but $6n+3=3(2n+1)$ is always composite when $nge1$.



The same argument gives $I(6n+2)-2I(6n+1)+I(6n) = r(6n+1)$, which is $2$ if $6n-1$ is prime and $0$ otherwise; this is why (as observed by John Omielan) it equals $2$ for $1le nle 5$ but $0$ for $n=6$.






share|cite|improve this answer











$endgroup$



The answer is yes. Sketch of solution:
$$
I(k) = int_0^k sum_{ple x} sum_{qle k-x} 1 ,dx = sum_p sum_{qle k-p} int_p^{k-q} dx = sum_p sum_{qle k-p} (k-(p+q)) = sum_{mle k} r(m)(k-m),
$$

where $r(m)$ is the number of ways of writing $m$ as the sum of two primes. Then
$$
I(6n+6)-2I(6n+5)+I(6n+4) = sum_{mle 6n+4} r(m)big( (6n+6-m)-2(6n+5-m)+(6m+4-m) big) + r(6n+5) = \0 + r(6n+5);
$$

and $r(6n+5)=0$ for every $nge1$, since the only way the odd integer $6n+5$ can be the sum of two primes is $6n+5=2+(6n+3)$, but $6n+3=3(2n+1)$ is always composite when $nge1$.



The same argument gives $I(6n+2)-2I(6n+1)+I(6n) = r(6n+1)$, which is $2$ if $6n-1$ is prime and $0$ otherwise; this is why (as observed by John Omielan) it equals $2$ for $1le nle 5$ but $0$ for $n=6$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 14 mins ago









Tito Piezas III

27.4k366174




27.4k366174










answered 26 mins ago









Greg MartinGreg Martin

35.4k23263




35.4k23263








  • 1




    $begingroup$
    MSE never ceases to amaze me how fast some people can figure out the answer.
    $endgroup$
    – Tito Piezas III
    13 mins ago










  • $begingroup$
    Greg, do you know how to address Ultradark's question regarding when $I(k)$ is prime?
    $endgroup$
    – Tito Piezas III
    3 mins ago














  • 1




    $begingroup$
    MSE never ceases to amaze me how fast some people can figure out the answer.
    $endgroup$
    – Tito Piezas III
    13 mins ago










  • $begingroup$
    Greg, do you know how to address Ultradark's question regarding when $I(k)$ is prime?
    $endgroup$
    – Tito Piezas III
    3 mins ago








1




1




$begingroup$
MSE never ceases to amaze me how fast some people can figure out the answer.
$endgroup$
– Tito Piezas III
13 mins ago




$begingroup$
MSE never ceases to amaze me how fast some people can figure out the answer.
$endgroup$
– Tito Piezas III
13 mins ago












$begingroup$
Greg, do you know how to address Ultradark's question regarding when $I(k)$ is prime?
$endgroup$
– Tito Piezas III
3 mins ago




$begingroup$
Greg, do you know how to address Ultradark's question regarding when $I(k)$ is prime?
$endgroup$
– Tito Piezas III
3 mins ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3128367%2fa-curious-equality-of-integrals-involving-the-prime-counting-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

ORA-01691 (unable to extend lob segment) even though my tablespace has AUTOEXTEND onORA-01692: unable to...

Always On Availability groups resolving state after failover - Remote harden of transaction...

Circunscripción electoral de Guipúzcoa Referencias Menú de navegaciónLas claves del sistema electoral en...