Integral check. Is partial fractions the only way?Integral by partial fractionsHow to use integration by...

Why is Bernie Sanders maximum accepted donation on actblue $5600?

How can I portray body horror and still be sensitive to people with disabilities?

Why didn't Lorentz conclude that no object can go faster than light?

How do I handle a blinded enemy which wants to attack someone it's sure is there?

Why is ra lower than re while la is higher than le?

How do I add a strong "onion flavor" to the biryani (in restaurant style)?

Short Story - Man lives in isolation in a compound, plays tennis against a robot, arranges meeting with a woman

Rudeness by being polite

Is opening a file faster than reading variable content?

Is layered encryption more secure than long passwords?

Why does finding small effects in large studies indicate publication bias?

Are encryption algorithms with fixed-point free permutations inherently flawed?

How does the income of your target audience matter for logo design?

Identical projects by students at two different colleges: still plagiarism?

What happens if you declare more than $10,000 at the US border?

Why do BLDC motor (1 kW) controllers have so many MOSFETs?

The Late Queen Gives in to Remorse - Reverse Hangman

I hate taking lectures, can I still survive in academia?

Discouraging missile alpha strikes

Integral check. Is partial fractions the only way?

Is Screenshot Time-tracking Common?

Why is Shelob considered evil?

What are Holorydmachines?

Microphone on Mars



Integral check. Is partial fractions the only way?


Integral by partial fractionsHow to use integration by partial fractions to calculate the integral of a function whose numerator is larger than its denominator?Find the integral of $frac{sin(x)}{1+sin^2(x)}$Integral Partial Fractions and Wolfram AlphaResolve into partial fractions, hence calculate the volume obtainedPartial fractions to solve integralsSolve $int frac{1}{cos^2(x)+cos(x)+1}dx$Evaluate $int frac{e^{2x}-1}{e^{2x}+1}dx$ using partial fractionscomplex integral, partial fractions 2Integral using trig substitution check













1












$begingroup$


I'm getting a different answer from wolfram and I have no idea where. I have to integrate:



$$int_0^1 frac{xdx}{(2x+1)^3}$$



Is partial fractions the only way?



So evaluating the fraction first:



$$frac{x}{(2x+1)^3} = frac{A}{2x+1} + frac{B}{(2x+1)^2} + frac{C}{(2x+1)^3}$$



$$x = A(2x+1)^2 + B(2x+1) + C$$



$$x = A(4x^2 + 4x + 1) + 2Bx + B + C$$



$$x = 4Ax^2 + 4Ax + A + 2Bx + B + C$$



$$x = x^2(4A) + x(4A+2B) + A + B + C$$



$4A = 0$ and $4A+2B = 1$ and $A + B + C = 0$ so $A = 0$ and $B=frac{1}{2}$ and $C = frac{-1}{2}$



Is the partial fraction part right?



So then I get:



$$int_0^1 frac{xdx}{(2x+1)^3} = int_0^1 frac{dx}{(2(2x+1)^2)} - int_0^1 frac{dx}{2(2x+1)^3}$$



for both, using $u = 2x+1$ and $frac{du}{dx} = 2$ and $du = 2dx$ and $frac{du}{2} = dx$,
$$frac{1}{4} int frac{du}{u^2} - frac{1}{4} int frac{du}{u^3}$$



$$ = [frac{1}{4} - u^{-1} - frac{1}{4} cdot frac{1}{-2} u^{-2} ]_1^3$$



I'm going the route of changing the limits to the new u and since $u = 2x+1$, when $x = 0, u = 1$ and when $x = 1, u = 3$. Is this the right path?



finally I get



$$[frac{-1}{4}u^{-1} + frac{1}{8}u^{-2} ]_1^3$$



I plug in numbers but I get a different answer than wolfram...










share|cite|improve this question











$endgroup$












  • $begingroup$
    I can't see any mistake in your work. What's the answer given by wolfram?
    $endgroup$
    – Thomas Shelby
    2 hours ago










  • $begingroup$
    They have 1/18 as the answer @ThomasShelby
    $endgroup$
    – Jwan622
    39 mins ago
















1












$begingroup$


I'm getting a different answer from wolfram and I have no idea where. I have to integrate:



$$int_0^1 frac{xdx}{(2x+1)^3}$$



Is partial fractions the only way?



So evaluating the fraction first:



$$frac{x}{(2x+1)^3} = frac{A}{2x+1} + frac{B}{(2x+1)^2} + frac{C}{(2x+1)^3}$$



$$x = A(2x+1)^2 + B(2x+1) + C$$



$$x = A(4x^2 + 4x + 1) + 2Bx + B + C$$



$$x = 4Ax^2 + 4Ax + A + 2Bx + B + C$$



$$x = x^2(4A) + x(4A+2B) + A + B + C$$



$4A = 0$ and $4A+2B = 1$ and $A + B + C = 0$ so $A = 0$ and $B=frac{1}{2}$ and $C = frac{-1}{2}$



Is the partial fraction part right?



So then I get:



$$int_0^1 frac{xdx}{(2x+1)^3} = int_0^1 frac{dx}{(2(2x+1)^2)} - int_0^1 frac{dx}{2(2x+1)^3}$$



for both, using $u = 2x+1$ and $frac{du}{dx} = 2$ and $du = 2dx$ and $frac{du}{2} = dx$,
$$frac{1}{4} int frac{du}{u^2} - frac{1}{4} int frac{du}{u^3}$$



$$ = [frac{1}{4} - u^{-1} - frac{1}{4} cdot frac{1}{-2} u^{-2} ]_1^3$$



I'm going the route of changing the limits to the new u and since $u = 2x+1$, when $x = 0, u = 1$ and when $x = 1, u = 3$. Is this the right path?



finally I get



$$[frac{-1}{4}u^{-1} + frac{1}{8}u^{-2} ]_1^3$$



I plug in numbers but I get a different answer than wolfram...










share|cite|improve this question











$endgroup$












  • $begingroup$
    I can't see any mistake in your work. What's the answer given by wolfram?
    $endgroup$
    – Thomas Shelby
    2 hours ago










  • $begingroup$
    They have 1/18 as the answer @ThomasShelby
    $endgroup$
    – Jwan622
    39 mins ago














1












1








1





$begingroup$


I'm getting a different answer from wolfram and I have no idea where. I have to integrate:



$$int_0^1 frac{xdx}{(2x+1)^3}$$



Is partial fractions the only way?



So evaluating the fraction first:



$$frac{x}{(2x+1)^3} = frac{A}{2x+1} + frac{B}{(2x+1)^2} + frac{C}{(2x+1)^3}$$



$$x = A(2x+1)^2 + B(2x+1) + C$$



$$x = A(4x^2 + 4x + 1) + 2Bx + B + C$$



$$x = 4Ax^2 + 4Ax + A + 2Bx + B + C$$



$$x = x^2(4A) + x(4A+2B) + A + B + C$$



$4A = 0$ and $4A+2B = 1$ and $A + B + C = 0$ so $A = 0$ and $B=frac{1}{2}$ and $C = frac{-1}{2}$



Is the partial fraction part right?



So then I get:



$$int_0^1 frac{xdx}{(2x+1)^3} = int_0^1 frac{dx}{(2(2x+1)^2)} - int_0^1 frac{dx}{2(2x+1)^3}$$



for both, using $u = 2x+1$ and $frac{du}{dx} = 2$ and $du = 2dx$ and $frac{du}{2} = dx$,
$$frac{1}{4} int frac{du}{u^2} - frac{1}{4} int frac{du}{u^3}$$



$$ = [frac{1}{4} - u^{-1} - frac{1}{4} cdot frac{1}{-2} u^{-2} ]_1^3$$



I'm going the route of changing the limits to the new u and since $u = 2x+1$, when $x = 0, u = 1$ and when $x = 1, u = 3$. Is this the right path?



finally I get



$$[frac{-1}{4}u^{-1} + frac{1}{8}u^{-2} ]_1^3$$



I plug in numbers but I get a different answer than wolfram...










share|cite|improve this question











$endgroup$




I'm getting a different answer from wolfram and I have no idea where. I have to integrate:



$$int_0^1 frac{xdx}{(2x+1)^3}$$



Is partial fractions the only way?



So evaluating the fraction first:



$$frac{x}{(2x+1)^3} = frac{A}{2x+1} + frac{B}{(2x+1)^2} + frac{C}{(2x+1)^3}$$



$$x = A(2x+1)^2 + B(2x+1) + C$$



$$x = A(4x^2 + 4x + 1) + 2Bx + B + C$$



$$x = 4Ax^2 + 4Ax + A + 2Bx + B + C$$



$$x = x^2(4A) + x(4A+2B) + A + B + C$$



$4A = 0$ and $4A+2B = 1$ and $A + B + C = 0$ so $A = 0$ and $B=frac{1}{2}$ and $C = frac{-1}{2}$



Is the partial fraction part right?



So then I get:



$$int_0^1 frac{xdx}{(2x+1)^3} = int_0^1 frac{dx}{(2(2x+1)^2)} - int_0^1 frac{dx}{2(2x+1)^3}$$



for both, using $u = 2x+1$ and $frac{du}{dx} = 2$ and $du = 2dx$ and $frac{du}{2} = dx$,
$$frac{1}{4} int frac{du}{u^2} - frac{1}{4} int frac{du}{u^3}$$



$$ = [frac{1}{4} - u^{-1} - frac{1}{4} cdot frac{1}{-2} u^{-2} ]_1^3$$



I'm going the route of changing the limits to the new u and since $u = 2x+1$, when $x = 0, u = 1$ and when $x = 1, u = 3$. Is this the right path?



finally I get



$$[frac{-1}{4}u^{-1} + frac{1}{8}u^{-2} ]_1^3$$



I plug in numbers but I get a different answer than wolfram...







integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









Joshua Mundinger

2,5191028




2,5191028










asked 2 hours ago









Jwan622Jwan622

2,13611530




2,13611530












  • $begingroup$
    I can't see any mistake in your work. What's the answer given by wolfram?
    $endgroup$
    – Thomas Shelby
    2 hours ago










  • $begingroup$
    They have 1/18 as the answer @ThomasShelby
    $endgroup$
    – Jwan622
    39 mins ago


















  • $begingroup$
    I can't see any mistake in your work. What's the answer given by wolfram?
    $endgroup$
    – Thomas Shelby
    2 hours ago










  • $begingroup$
    They have 1/18 as the answer @ThomasShelby
    $endgroup$
    – Jwan622
    39 mins ago
















$begingroup$
I can't see any mistake in your work. What's the answer given by wolfram?
$endgroup$
– Thomas Shelby
2 hours ago




$begingroup$
I can't see any mistake in your work. What's the answer given by wolfram?
$endgroup$
– Thomas Shelby
2 hours ago












$begingroup$
They have 1/18 as the answer @ThomasShelby
$endgroup$
– Jwan622
39 mins ago




$begingroup$
They have 1/18 as the answer @ThomasShelby
$endgroup$
– Jwan622
39 mins ago










3 Answers
3






active

oldest

votes


















3












$begingroup$

Hint: Substitute $x=tfrac12 u -tfrac12$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    You beat me to it.
    $endgroup$
    – randomgirl
    2 hours ago










  • $begingroup$
    If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
    $endgroup$
    – Jwan622
    16 mins ago



















2












$begingroup$

A much much easier way to solve it is by using integration by parts.



Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    $u$ but then $dv$?
    $endgroup$
    – manooooh
    2 hours ago










  • $begingroup$
    @manooooh What do you mean? I don't understand.
    $endgroup$
    – Haris Gusic
    2 hours ago










  • $begingroup$
    I am sorry, I understood that you used sub. My apologies.
    $endgroup$
    – manooooh
    2 hours ago



















1












$begingroup$

1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$



2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$



3) Integrate to get



$$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3120889%2fintegral-check-is-partial-fractions-the-only-way%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Hint: Substitute $x=tfrac12 u -tfrac12$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      You beat me to it.
      $endgroup$
      – randomgirl
      2 hours ago










    • $begingroup$
      If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
      $endgroup$
      – Jwan622
      16 mins ago
















    3












    $begingroup$

    Hint: Substitute $x=tfrac12 u -tfrac12$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      You beat me to it.
      $endgroup$
      – randomgirl
      2 hours ago










    • $begingroup$
      If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
      $endgroup$
      – Jwan622
      16 mins ago














    3












    3








    3





    $begingroup$

    Hint: Substitute $x=tfrac12 u -tfrac12$






    share|cite|improve this answer









    $endgroup$



    Hint: Substitute $x=tfrac12 u -tfrac12$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 2 hours ago









    MPWMPW

    30.3k12157




    30.3k12157












    • $begingroup$
      You beat me to it.
      $endgroup$
      – randomgirl
      2 hours ago










    • $begingroup$
      If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
      $endgroup$
      – Jwan622
      16 mins ago


















    • $begingroup$
      You beat me to it.
      $endgroup$
      – randomgirl
      2 hours ago










    • $begingroup$
      If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
      $endgroup$
      – Jwan622
      16 mins ago
















    $begingroup$
    You beat me to it.
    $endgroup$
    – randomgirl
    2 hours ago




    $begingroup$
    You beat me to it.
    $endgroup$
    – randomgirl
    2 hours ago












    $begingroup$
    If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
    $endgroup$
    – Jwan622
    16 mins ago




    $begingroup$
    If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
    $endgroup$
    – Jwan622
    16 mins ago











    2












    $begingroup$

    A much much easier way to solve it is by using integration by parts.



    Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      $u$ but then $dv$?
      $endgroup$
      – manooooh
      2 hours ago










    • $begingroup$
      @manooooh What do you mean? I don't understand.
      $endgroup$
      – Haris Gusic
      2 hours ago










    • $begingroup$
      I am sorry, I understood that you used sub. My apologies.
      $endgroup$
      – manooooh
      2 hours ago
















    2












    $begingroup$

    A much much easier way to solve it is by using integration by parts.



    Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      $u$ but then $dv$?
      $endgroup$
      – manooooh
      2 hours ago










    • $begingroup$
      @manooooh What do you mean? I don't understand.
      $endgroup$
      – Haris Gusic
      2 hours ago










    • $begingroup$
      I am sorry, I understood that you used sub. My apologies.
      $endgroup$
      – manooooh
      2 hours ago














    2












    2








    2





    $begingroup$

    A much much easier way to solve it is by using integration by parts.



    Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.






    share|cite|improve this answer









    $endgroup$



    A much much easier way to solve it is by using integration by parts.



    Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 2 hours ago









    Haris GusicHaris Gusic

    960116




    960116












    • $begingroup$
      $u$ but then $dv$?
      $endgroup$
      – manooooh
      2 hours ago










    • $begingroup$
      @manooooh What do you mean? I don't understand.
      $endgroup$
      – Haris Gusic
      2 hours ago










    • $begingroup$
      I am sorry, I understood that you used sub. My apologies.
      $endgroup$
      – manooooh
      2 hours ago


















    • $begingroup$
      $u$ but then $dv$?
      $endgroup$
      – manooooh
      2 hours ago










    • $begingroup$
      @manooooh What do you mean? I don't understand.
      $endgroup$
      – Haris Gusic
      2 hours ago










    • $begingroup$
      I am sorry, I understood that you used sub. My apologies.
      $endgroup$
      – manooooh
      2 hours ago
















    $begingroup$
    $u$ but then $dv$?
    $endgroup$
    – manooooh
    2 hours ago




    $begingroup$
    $u$ but then $dv$?
    $endgroup$
    – manooooh
    2 hours ago












    $begingroup$
    @manooooh What do you mean? I don't understand.
    $endgroup$
    – Haris Gusic
    2 hours ago




    $begingroup$
    @manooooh What do you mean? I don't understand.
    $endgroup$
    – Haris Gusic
    2 hours ago












    $begingroup$
    I am sorry, I understood that you used sub. My apologies.
    $endgroup$
    – manooooh
    2 hours ago




    $begingroup$
    I am sorry, I understood that you used sub. My apologies.
    $endgroup$
    – manooooh
    2 hours ago











    1












    $begingroup$

    1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$



    2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$



    3) Integrate to get



    $$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$



      2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$



      3) Integrate to get



      $$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$



        2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$



        3) Integrate to get



        $$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$






        share|cite|improve this answer









        $endgroup$



        1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$



        2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$



        3) Integrate to get



        $$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 hours ago









        FnacoolFnacool

        5,021511




        5,021511






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3120889%2fintegral-check-is-partial-fractions-the-only-way%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Anexo:Material bélico de la Fuerza Aérea de Chile Índice Aeronaves Defensa...

            Always On Availability groups resolving state after failover - Remote harden of transaction...

            update json value to null Announcing the arrival of Valued Associate #679: Cesar Manara ...