Ring Automorphisms that fix 1. Announcing the arrival of Valued Associate #679: Cesar Manara ...

Naming the result of a source block

What does an IRS interview request entail when called in to verify expenses for a sole proprietor small business?

What does the "x" in "x86" represent?

How do I stop a creek from eroding my steep embankment?

Apollo command module space walk?

Why was the term "discrete" used in discrete logarithm?

List of Python versions

Can inflation occur in a positive-sum game currency system such as the Stack Exchange reputation system?

What is the role of the transistor and diode in a soft start circuit?

Should I discuss the type of campaign with my players?

Why am I getting the error "non-boolean type specified in a context where a condition is expected" for this request?

Why are there no cargo aircraft with "flying wing" design?

Why is "Consequences inflicted." not a sentence?

How to tell that you are a giant?

Can I cast Passwall to drop an enemy into a 20-foot pit?

Single word antonym of "flightless"

Why did the Falcon Heavy center core fall off the ASDS OCISLY barge?

How do pianists reach extremely loud dynamics?

Short Story with Cinderella as a Voo-doo Witch

What's the purpose of writing one's academic biography in the third person?

What is Arya's weapon design?

Why didn't this character "real die" when they blew their stack out in Altered Carbon?

How to align text above triangle figure

Bete Noir -- no dairy



Ring Automorphisms that fix 1.



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Automorphisms of $mathbb Q(sqrt 2)$Automorphisms of $mathbb{R}^n$group of automorphisms of the ring $mathbb{Z}timesmathbb{Z}$Trying to understand a proof for the automorphisms of a polynomial ringAll automorphisms of splitting fieldsDetermining automorphisms of this extensionRing automorphisms of $mathbb{Q}[sqrt[3]{5}]$Automorphism of ring and isomorphism of quotient ringsThe automorphisms of the extension $mathbb{Q}(sqrt[4]{2})/mathbb{Q}$.Extension theorem for field automorphismsAre all verbal automorphisms inner power automorphisms?












2












$begingroup$


This question is a follow - up to this question about Field Automorphisms of $mathbb{Q}[sqrt{2}]$.



Since $mathbb{Q}[sqrt{2}]$ is a vector space over $mathbb{Q}$ with basis ${1, sqrt{2}}$, I naively understand why it is the case that automorphisms $phi$ of $mathbb{Q}[sqrt{2}]$ are determined wholly by the image of $1$ and $sqrt{2}$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt{2}) = sqrt{2}$, and I want to compute the value of $phi(frac{3}{2})$. I can do the following:



$$ phi(frac{3}{2}) = phi(3) phi(frac{1}{2}) = [phi(1) + phi(1) + phi(1)] phi(frac{1}{2}) = 3phi(frac{1}{2}).$$



I am unsure how to proceed from here. I would assume that it is true that $$phi(frac{1}{1 + 1}) = frac{phi(1)}{phi(1) + phi(1)} = frac{1}{2},$$ but I don't know what property of ring isomorphisms would allow me to do this.










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    This question is a follow - up to this question about Field Automorphisms of $mathbb{Q}[sqrt{2}]$.



    Since $mathbb{Q}[sqrt{2}]$ is a vector space over $mathbb{Q}$ with basis ${1, sqrt{2}}$, I naively understand why it is the case that automorphisms $phi$ of $mathbb{Q}[sqrt{2}]$ are determined wholly by the image of $1$ and $sqrt{2}$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt{2}) = sqrt{2}$, and I want to compute the value of $phi(frac{3}{2})$. I can do the following:



    $$ phi(frac{3}{2}) = phi(3) phi(frac{1}{2}) = [phi(1) + phi(1) + phi(1)] phi(frac{1}{2}) = 3phi(frac{1}{2}).$$



    I am unsure how to proceed from here. I would assume that it is true that $$phi(frac{1}{1 + 1}) = frac{phi(1)}{phi(1) + phi(1)} = frac{1}{2},$$ but I don't know what property of ring isomorphisms would allow me to do this.










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      This question is a follow - up to this question about Field Automorphisms of $mathbb{Q}[sqrt{2}]$.



      Since $mathbb{Q}[sqrt{2}]$ is a vector space over $mathbb{Q}$ with basis ${1, sqrt{2}}$, I naively understand why it is the case that automorphisms $phi$ of $mathbb{Q}[sqrt{2}]$ are determined wholly by the image of $1$ and $sqrt{2}$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt{2}) = sqrt{2}$, and I want to compute the value of $phi(frac{3}{2})$. I can do the following:



      $$ phi(frac{3}{2}) = phi(3) phi(frac{1}{2}) = [phi(1) + phi(1) + phi(1)] phi(frac{1}{2}) = 3phi(frac{1}{2}).$$



      I am unsure how to proceed from here. I would assume that it is true that $$phi(frac{1}{1 + 1}) = frac{phi(1)}{phi(1) + phi(1)} = frac{1}{2},$$ but I don't know what property of ring isomorphisms would allow me to do this.










      share|cite|improve this question









      $endgroup$




      This question is a follow - up to this question about Field Automorphisms of $mathbb{Q}[sqrt{2}]$.



      Since $mathbb{Q}[sqrt{2}]$ is a vector space over $mathbb{Q}$ with basis ${1, sqrt{2}}$, I naively understand why it is the case that automorphisms $phi$ of $mathbb{Q}[sqrt{2}]$ are determined wholly by the image of $1$ and $sqrt{2}$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt{2}) = sqrt{2}$, and I want to compute the value of $phi(frac{3}{2})$. I can do the following:



      $$ phi(frac{3}{2}) = phi(3) phi(frac{1}{2}) = [phi(1) + phi(1) + phi(1)] phi(frac{1}{2}) = 3phi(frac{1}{2}).$$



      I am unsure how to proceed from here. I would assume that it is true that $$phi(frac{1}{1 + 1}) = frac{phi(1)}{phi(1) + phi(1)} = frac{1}{2},$$ but I don't know what property of ring isomorphisms would allow me to do this.







      abstract-algebra ring-theory field-theory galois-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 3 hours ago









      Solarflare0Solarflare0

      9813




      9813






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          $$
          2phi(frac{3}{2}) = phi(3) = 3phi(1) = 3
          implies
          phi(frac{3}{2}) =frac{3}{2}
          $$

          Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            Every automorphism fixes $mathbb{Q}$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbb{Q}$.



            For the proof, we assume WLOG that $mathbb{Q} subseteq K$. Then:




            • $phi$ fixes $0$ and $1$, by definition.


            • $phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.


            • $phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.


            • $phi$ fixes all rational numbers, since $n cdot phileft(frac{m}{n}right) = phi(m) = m$, so $phileft(frac{m}{n}right) = frac{m}{n}$.





            More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbb{Q}$, since all automorphisms fix $mathbb{Q}$, such a restriction is unnecessary.






            share|cite|improve this answer









            $endgroup$














              Your Answer








              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190546%2fring-automorphisms-that-fix-1%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              $$
              2phi(frac{3}{2}) = phi(3) = 3phi(1) = 3
              implies
              phi(frac{3}{2}) =frac{3}{2}
              $$

              Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                $$
                2phi(frac{3}{2}) = phi(3) = 3phi(1) = 3
                implies
                phi(frac{3}{2}) =frac{3}{2}
                $$

                Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  $$
                  2phi(frac{3}{2}) = phi(3) = 3phi(1) = 3
                  implies
                  phi(frac{3}{2}) =frac{3}{2}
                  $$

                  Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.






                  share|cite|improve this answer









                  $endgroup$



                  $$
                  2phi(frac{3}{2}) = phi(3) = 3phi(1) = 3
                  implies
                  phi(frac{3}{2}) =frac{3}{2}
                  $$

                  Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  lhflhf

                  168k11172405




                  168k11172405























                      1












                      $begingroup$

                      Every automorphism fixes $mathbb{Q}$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbb{Q}$.



                      For the proof, we assume WLOG that $mathbb{Q} subseteq K$. Then:




                      • $phi$ fixes $0$ and $1$, by definition.


                      • $phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.


                      • $phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.


                      • $phi$ fixes all rational numbers, since $n cdot phileft(frac{m}{n}right) = phi(m) = m$, so $phileft(frac{m}{n}right) = frac{m}{n}$.





                      More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbb{Q}$, since all automorphisms fix $mathbb{Q}$, such a restriction is unnecessary.






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        Every automorphism fixes $mathbb{Q}$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbb{Q}$.



                        For the proof, we assume WLOG that $mathbb{Q} subseteq K$. Then:




                        • $phi$ fixes $0$ and $1$, by definition.


                        • $phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.


                        • $phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.


                        • $phi$ fixes all rational numbers, since $n cdot phileft(frac{m}{n}right) = phi(m) = m$, so $phileft(frac{m}{n}right) = frac{m}{n}$.





                        More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbb{Q}$, since all automorphisms fix $mathbb{Q}$, such a restriction is unnecessary.






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          Every automorphism fixes $mathbb{Q}$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbb{Q}$.



                          For the proof, we assume WLOG that $mathbb{Q} subseteq K$. Then:




                          • $phi$ fixes $0$ and $1$, by definition.


                          • $phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.


                          • $phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.


                          • $phi$ fixes all rational numbers, since $n cdot phileft(frac{m}{n}right) = phi(m) = m$, so $phileft(frac{m}{n}right) = frac{m}{n}$.





                          More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbb{Q}$, since all automorphisms fix $mathbb{Q}$, such a restriction is unnecessary.






                          share|cite|improve this answer









                          $endgroup$



                          Every automorphism fixes $mathbb{Q}$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbb{Q}$.



                          For the proof, we assume WLOG that $mathbb{Q} subseteq K$. Then:




                          • $phi$ fixes $0$ and $1$, by definition.


                          • $phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.


                          • $phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.


                          • $phi$ fixes all rational numbers, since $n cdot phileft(frac{m}{n}right) = phi(m) = m$, so $phileft(frac{m}{n}right) = frac{m}{n}$.





                          More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbb{Q}$, since all automorphisms fix $mathbb{Q}$, such a restriction is unnecessary.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 2 hours ago









                          60056005

                          37.1k752127




                          37.1k752127






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190546%2fring-automorphisms-that-fix-1%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              ORA-01691 (unable to extend lob segment) even though my tablespace has AUTOEXTEND onORA-01692: unable to...

                              Always On Availability groups resolving state after failover - Remote harden of transaction...

                              Circunscripción electoral de Guipúzcoa Referencias Menú de navegaciónLas claves del sistema electoral en...