General derivative of the exponential operator w.r.t. a parameterDerivative of the product of operators and...
Does a star need to be inside a galaxy?
A dragon's soul trapped in a ring of mind shielding wants a new body; what magic could enable her to do so?
Workplace intimidation due to child's chronic health condition
Ethernet cable only works in certain positions
boss asked me to sign a resignation paper without a date on it along with my new contract
Why is Shelob considered evil?
Uncountable set with a non-discrete metric
How to play song that contains one guitar when we have two guitarists (or more)?
Apparently I’m calling random numbers but there's nothing in the call log
Why did Tywin never remarry?
Does the phrase がんばする makes sense?
Why do most space probes survive for far longer than they were designed for?
Is candidate anonymity at all practical?
How to not forget my phone in the bathroom?
Does human life have innate value over that of other animals?
Why is Bernie Sanders maximum accepted donation on actblue $5600?
Does a code with length 6, size 32 and distance 2 exist?
How can I get results over the whole domain of my non-linear differential equations?
How to know if I am a 'Real Developer'
How can guns be countered by melee combat without raw-ability or exceptional explanations?
Is the "hot network questions" element on Stack Overflow a dark pattern?
Can I legally make a website about boycotting a certain company?
Symbolism of number of crows?
Why didn't Lorentz conclude that no object can go faster than light?
General derivative of the exponential operator w.r.t. a parameter
Derivative of the product of operators and Derivative of exponentialDerivative of the product of operators and Derivative of exponentialRelationship between a formal vector derivative and time evolution of an operatorWhat is the commutator of the exponential derivative operator and the exponential position operator?Problem understanding electromagnetic interaction with matter (non-relativistic QED)How to obtain a two mode Squeezed state from two mode squeezed vacuum?Why the Kerr non-linearity is $a^dagger a^dagger a a$Covariant derivative vs partial derivative (in the context of Killing vectors)Physical explanation of the characteristics of the order parameter of the transverse Ising ModelTrace over configuration basisProof $exp(-beta H)$ trace-class operator
$begingroup$
I am interested in the calculation of the general $N$th derivative w.r.t. a parameter $lambda$ of a quantum mechanical exponential operator with the following structure:
begin{equation*}
frac{mathrm d^N}{mathrm d lambda^N} e^{-beta hat H(lambda)}
end{equation*}
In the case $n=1$ this reads as
begin{equation*}
sum_{n=0}^{+infty}sum_{m=0}^{n-1}frac{1}{n!}[hat H(lambda)]^{m}frac{mathrm dhat H(lambda)}{mathrm d lambda}[hat H(lambda)]^{n-m-1}
end{equation*}
Is there a compact fashion to rearrange the expression above for the general $N$th derivative?
quantum-mechanics operators mathematical-physics hamiltonian differentiation
$endgroup$
add a comment |
$begingroup$
I am interested in the calculation of the general $N$th derivative w.r.t. a parameter $lambda$ of a quantum mechanical exponential operator with the following structure:
begin{equation*}
frac{mathrm d^N}{mathrm d lambda^N} e^{-beta hat H(lambda)}
end{equation*}
In the case $n=1$ this reads as
begin{equation*}
sum_{n=0}^{+infty}sum_{m=0}^{n-1}frac{1}{n!}[hat H(lambda)]^{m}frac{mathrm dhat H(lambda)}{mathrm d lambda}[hat H(lambda)]^{n-m-1}
end{equation*}
Is there a compact fashion to rearrange the expression above for the general $N$th derivative?
quantum-mechanics operators mathematical-physics hamiltonian differentiation
$endgroup$
add a comment |
$begingroup$
I am interested in the calculation of the general $N$th derivative w.r.t. a parameter $lambda$ of a quantum mechanical exponential operator with the following structure:
begin{equation*}
frac{mathrm d^N}{mathrm d lambda^N} e^{-beta hat H(lambda)}
end{equation*}
In the case $n=1$ this reads as
begin{equation*}
sum_{n=0}^{+infty}sum_{m=0}^{n-1}frac{1}{n!}[hat H(lambda)]^{m}frac{mathrm dhat H(lambda)}{mathrm d lambda}[hat H(lambda)]^{n-m-1}
end{equation*}
Is there a compact fashion to rearrange the expression above for the general $N$th derivative?
quantum-mechanics operators mathematical-physics hamiltonian differentiation
$endgroup$
I am interested in the calculation of the general $N$th derivative w.r.t. a parameter $lambda$ of a quantum mechanical exponential operator with the following structure:
begin{equation*}
frac{mathrm d^N}{mathrm d lambda^N} e^{-beta hat H(lambda)}
end{equation*}
In the case $n=1$ this reads as
begin{equation*}
sum_{n=0}^{+infty}sum_{m=0}^{n-1}frac{1}{n!}[hat H(lambda)]^{m}frac{mathrm dhat H(lambda)}{mathrm d lambda}[hat H(lambda)]^{n-m-1}
end{equation*}
Is there a compact fashion to rearrange the expression above for the general $N$th derivative?
quantum-mechanics operators mathematical-physics hamiltonian differentiation
quantum-mechanics operators mathematical-physics hamiltonian differentiation
edited 34 mins ago
Qmechanic♦
105k121881202
105k121881202
asked 1 hour ago
GrazGraz
363
363
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: Use repeatedly the identity for the 1st derivative
$$ frac{d}{dlambda}e^{that{A}} ~=~ int_0^t!dt_1~ e^{(t-t_1)hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}}~=~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ .tag{1} $$
For a proof of eq. (1) see e.g. my Phys.SE answer here. Then the 2nd derivative becomes
$$begin{align} frac{d^2}{dlambda^2}e^{that{A}}
&~=~2iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{d^2hat{A}}{dlambda^2}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ ,end{align}tag{2} $$
and so forth.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "151"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f461860%2fgeneral-derivative-of-the-exponential-operator-w-r-t-a-parameter%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Use repeatedly the identity for the 1st derivative
$$ frac{d}{dlambda}e^{that{A}} ~=~ int_0^t!dt_1~ e^{(t-t_1)hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}}~=~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ .tag{1} $$
For a proof of eq. (1) see e.g. my Phys.SE answer here. Then the 2nd derivative becomes
$$begin{align} frac{d^2}{dlambda^2}e^{that{A}}
&~=~2iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{d^2hat{A}}{dlambda^2}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ ,end{align}tag{2} $$
and so forth.
$endgroup$
add a comment |
$begingroup$
Hint: Use repeatedly the identity for the 1st derivative
$$ frac{d}{dlambda}e^{that{A}} ~=~ int_0^t!dt_1~ e^{(t-t_1)hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}}~=~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ .tag{1} $$
For a proof of eq. (1) see e.g. my Phys.SE answer here. Then the 2nd derivative becomes
$$begin{align} frac{d^2}{dlambda^2}e^{that{A}}
&~=~2iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{d^2hat{A}}{dlambda^2}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ ,end{align}tag{2} $$
and so forth.
$endgroup$
add a comment |
$begingroup$
Hint: Use repeatedly the identity for the 1st derivative
$$ frac{d}{dlambda}e^{that{A}} ~=~ int_0^t!dt_1~ e^{(t-t_1)hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}}~=~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ .tag{1} $$
For a proof of eq. (1) see e.g. my Phys.SE answer here. Then the 2nd derivative becomes
$$begin{align} frac{d^2}{dlambda^2}e^{that{A}}
&~=~2iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{d^2hat{A}}{dlambda^2}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ ,end{align}tag{2} $$
and so forth.
$endgroup$
Hint: Use repeatedly the identity for the 1st derivative
$$ frac{d}{dlambda}e^{that{A}} ~=~ int_0^t!dt_1~ e^{(t-t_1)hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}}~=~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ .tag{1} $$
For a proof of eq. (1) see e.g. my Phys.SE answer here. Then the 2nd derivative becomes
$$begin{align} frac{d^2}{dlambda^2}e^{that{A}}
&~=~2iiint_{mathbb{R}^3_+}!dt_1~dt_2~dt_3~delta(t!-!t_1!-!t_2!-!t_3)~ e^{t_3hat{A}}frac{dhat{A}}{dlambda}e^{t_2hat{A}}frac{dhat{A}}{dlambda}e^{t_1hat{A}} cr
&~+~ iint_{mathbb{R}^2_+}!dt_1~dt_2~delta(t!-!t_1!-!t_2)~ e^{t_2hat{A}}frac{d^2hat{A}}{dlambda^2}e^{t_1hat{A}} , qquad t~in~mathbb{R}_+ ,end{align}tag{2} $$
and so forth.
edited 26 mins ago
answered 35 mins ago
Qmechanic♦Qmechanic
105k121881202
105k121881202
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f461860%2fgeneral-derivative-of-the-exponential-operator-w-r-t-a-parameter%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown