How is the relation “the smallest element is the same” reflexive?Need help counting equivalence...

What does "enim et" mean?

Why is the design of haulage companies so “special”?

How old can references or sources in a thesis be?

"which" command doesn't work / path of Safari?

How do I create uniquely male characters?

When blogging recipes, how can I support both readers who want the narrative/journey and ones who want the printer-friendly recipe?

What typically incentivizes a professor to change jobs to a lower ranking university?

Prevent a directory in /tmp from being deleted

What is GPS' 19 year rollover and does it present a cybersecurity issue?

DOS, create pipe for stdin/stdout of command.com(or 4dos.com) in C or Batch?

What is the command to reset a PC without deleting any files

Why are 150k or 200k jobs considered good when there are 300k+ births a month?

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

How can the DM most effectively choose 1 out of an odd number of players to be targeted by an attack or effect?

My colleague's body is amazing

Download, install and reboot computer at night if needed

The use of multiple foreign keys on same column in SQL Server

Motorized valve interfering with button?

How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)

How can bays and straits be determined in a procedurally generated map?

Is it possible to do 50 km distance without any previous training?

Is it legal to have the "// (c) 2019 John Smith" header in all files when there are hundreds of contributors?

What is the offset in a seaplane's hull?

least quadratic residue under GRH: an EXPLICIT bound



How is the relation “the smallest element is the same” reflexive?


Need help counting equivalence classes.Finding the smallest relation that is reflexive, transitive, and symmetricSmallest relation for reflexive, symmetry and transitivityEquivalence relation example. How is this even reflexive?Is antisymmetric the same as reflexive?Finding the smallest equivalence relation containing a specific list of ordered pairsHow is this an equivalence relation?truefalse claims in relations and equivalence relationsWhat is the least and greatest element in symmetric but not reflexive relation over ${1,2,3}$?How is this case a reflexive relation?













8












$begingroup$


Let $mathcal{X}$ be the set of all nonempty subsets of the set ${1,2,3,...,10}$. Define the relation $mathcal{R}$ on $mathcal{X}$ by: $forall A, B in mathcal{X}, A mathcal{R} B$ iff the smallest element of $A$ is equal to the smallest element of $B$. For example, ${1,2,3} mathcal{R} {1,3,5,8}$ because the smallest element of ${1,2,3}$ is $1$ which is also the smallest element of ${1,3,5,8}$.



Prove that $mathcal{R}$ is an equivalence relation on $mathcal{X}$.



From my understanding, the definition of reflexive is:



$$mathcal{R} text{ is reflexive iff } forall x in mathcal{X}, x mathcal{R} x$$



However, for this problem, you can have the relation with these two sets:



${1}$ and ${1,2}$



Then wouldn't this not be reflexive since $2$ is not in the first set, but is in the second set?



I'm having trouble seeing how this is reflexive. Getting confused by the definition here.










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that ${ 1 } mathcal R { 1,2 }$ but we have also ${ 1 } mathcal R { 1 }$ and ${ 1,2 } mathcal R { 1,2 }$
    $endgroup$
    – Mauro ALLEGRANZA
    11 hours ago






  • 6




    $begingroup$
    Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
    $endgroup$
    – Arturo Magidin
    11 hours ago










  • $begingroup$
    So it must be reflexive because both $A$ and $B$ belong to the same set $mathcal{X}$?
    $endgroup$
    – qbuffer
    11 hours ago












  • $begingroup$
    @qbuffer Have a look at the updated version of my answer.
    $endgroup$
    – Haris Gusic
    10 hours ago
















8












$begingroup$


Let $mathcal{X}$ be the set of all nonempty subsets of the set ${1,2,3,...,10}$. Define the relation $mathcal{R}$ on $mathcal{X}$ by: $forall A, B in mathcal{X}, A mathcal{R} B$ iff the smallest element of $A$ is equal to the smallest element of $B$. For example, ${1,2,3} mathcal{R} {1,3,5,8}$ because the smallest element of ${1,2,3}$ is $1$ which is also the smallest element of ${1,3,5,8}$.



Prove that $mathcal{R}$ is an equivalence relation on $mathcal{X}$.



From my understanding, the definition of reflexive is:



$$mathcal{R} text{ is reflexive iff } forall x in mathcal{X}, x mathcal{R} x$$



However, for this problem, you can have the relation with these two sets:



${1}$ and ${1,2}$



Then wouldn't this not be reflexive since $2$ is not in the first set, but is in the second set?



I'm having trouble seeing how this is reflexive. Getting confused by the definition here.










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that ${ 1 } mathcal R { 1,2 }$ but we have also ${ 1 } mathcal R { 1 }$ and ${ 1,2 } mathcal R { 1,2 }$
    $endgroup$
    – Mauro ALLEGRANZA
    11 hours ago






  • 6




    $begingroup$
    Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
    $endgroup$
    – Arturo Magidin
    11 hours ago










  • $begingroup$
    So it must be reflexive because both $A$ and $B$ belong to the same set $mathcal{X}$?
    $endgroup$
    – qbuffer
    11 hours ago












  • $begingroup$
    @qbuffer Have a look at the updated version of my answer.
    $endgroup$
    – Haris Gusic
    10 hours ago














8












8








8





$begingroup$


Let $mathcal{X}$ be the set of all nonempty subsets of the set ${1,2,3,...,10}$. Define the relation $mathcal{R}$ on $mathcal{X}$ by: $forall A, B in mathcal{X}, A mathcal{R} B$ iff the smallest element of $A$ is equal to the smallest element of $B$. For example, ${1,2,3} mathcal{R} {1,3,5,8}$ because the smallest element of ${1,2,3}$ is $1$ which is also the smallest element of ${1,3,5,8}$.



Prove that $mathcal{R}$ is an equivalence relation on $mathcal{X}$.



From my understanding, the definition of reflexive is:



$$mathcal{R} text{ is reflexive iff } forall x in mathcal{X}, x mathcal{R} x$$



However, for this problem, you can have the relation with these two sets:



${1}$ and ${1,2}$



Then wouldn't this not be reflexive since $2$ is not in the first set, but is in the second set?



I'm having trouble seeing how this is reflexive. Getting confused by the definition here.










share|cite|improve this question











$endgroup$




Let $mathcal{X}$ be the set of all nonempty subsets of the set ${1,2,3,...,10}$. Define the relation $mathcal{R}$ on $mathcal{X}$ by: $forall A, B in mathcal{X}, A mathcal{R} B$ iff the smallest element of $A$ is equal to the smallest element of $B$. For example, ${1,2,3} mathcal{R} {1,3,5,8}$ because the smallest element of ${1,2,3}$ is $1$ which is also the smallest element of ${1,3,5,8}$.



Prove that $mathcal{R}$ is an equivalence relation on $mathcal{X}$.



From my understanding, the definition of reflexive is:



$$mathcal{R} text{ is reflexive iff } forall x in mathcal{X}, x mathcal{R} x$$



However, for this problem, you can have the relation with these two sets:



${1}$ and ${1,2}$



Then wouldn't this not be reflexive since $2$ is not in the first set, but is in the second set?



I'm having trouble seeing how this is reflexive. Getting confused by the definition here.







discrete-mathematics elementary-set-theory relations equivalence-relations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 28 mins ago









Martin Sleziak

45k10122277




45k10122277










asked 11 hours ago









qbufferqbuffer

625




625








  • 4




    $begingroup$
    Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that ${ 1 } mathcal R { 1,2 }$ but we have also ${ 1 } mathcal R { 1 }$ and ${ 1,2 } mathcal R { 1,2 }$
    $endgroup$
    – Mauro ALLEGRANZA
    11 hours ago






  • 6




    $begingroup$
    Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
    $endgroup$
    – Arturo Magidin
    11 hours ago










  • $begingroup$
    So it must be reflexive because both $A$ and $B$ belong to the same set $mathcal{X}$?
    $endgroup$
    – qbuffer
    11 hours ago












  • $begingroup$
    @qbuffer Have a look at the updated version of my answer.
    $endgroup$
    – Haris Gusic
    10 hours ago














  • 4




    $begingroup$
    Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that ${ 1 } mathcal R { 1,2 }$ but we have also ${ 1 } mathcal R { 1 }$ and ${ 1,2 } mathcal R { 1,2 }$
    $endgroup$
    – Mauro ALLEGRANZA
    11 hours ago






  • 6




    $begingroup$
    Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
    $endgroup$
    – Arturo Magidin
    11 hours ago










  • $begingroup$
    So it must be reflexive because both $A$ and $B$ belong to the same set $mathcal{X}$?
    $endgroup$
    – qbuffer
    11 hours ago












  • $begingroup$
    @qbuffer Have a look at the updated version of my answer.
    $endgroup$
    – Haris Gusic
    10 hours ago








4




4




$begingroup$
Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that ${ 1 } mathcal R { 1,2 }$ but we have also ${ 1 } mathcal R { 1 }$ and ${ 1,2 } mathcal R { 1,2 }$
$endgroup$
– Mauro ALLEGRANZA
11 hours ago




$begingroup$
Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that ${ 1 } mathcal R { 1,2 }$ but we have also ${ 1 } mathcal R { 1 }$ and ${ 1,2 } mathcal R { 1,2 }$
$endgroup$
– Mauro ALLEGRANZA
11 hours ago




6




6




$begingroup$
Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
$endgroup$
– Arturo Magidin
11 hours ago




$begingroup$
Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
$endgroup$
– Arturo Magidin
11 hours ago












$begingroup$
So it must be reflexive because both $A$ and $B$ belong to the same set $mathcal{X}$?
$endgroup$
– qbuffer
11 hours ago






$begingroup$
So it must be reflexive because both $A$ and $B$ belong to the same set $mathcal{X}$?
$endgroup$
– qbuffer
11 hours ago














$begingroup$
@qbuffer Have a look at the updated version of my answer.
$endgroup$
– Haris Gusic
10 hours ago




$begingroup$
@qbuffer Have a look at the updated version of my answer.
$endgroup$
– Haris Gusic
10 hours ago










2 Answers
2






active

oldest

votes


















8












$begingroup$

Why are you testing reflexivity by looking at two different elements of $mathcal{X}$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.



To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcal{R} x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.



You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that ${1}mathcal R {1,2}$ does not contradict the fact that ${1,2}mathcal R {1,2}$ as well.






share|cite|improve this answer











$endgroup$





















    4












    $begingroup$

    A binary relation $R$ over a set $mathcal{X}$ is reflexive if every element of $mathcal{X}$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcal{R} text{ is reflexive iff } forall x in mathcal{X}, x mathcal{R} x$$



    Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.






    share|cite|improve this answer









    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178532%2fhow-is-the-relation-the-smallest-element-is-the-same-reflexive%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      8












      $begingroup$

      Why are you testing reflexivity by looking at two different elements of $mathcal{X}$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.



      To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcal{R} x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.



      You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that ${1}mathcal R {1,2}$ does not contradict the fact that ${1,2}mathcal R {1,2}$ as well.






      share|cite|improve this answer











      $endgroup$


















        8












        $begingroup$

        Why are you testing reflexivity by looking at two different elements of $mathcal{X}$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.



        To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcal{R} x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.



        You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that ${1}mathcal R {1,2}$ does not contradict the fact that ${1,2}mathcal R {1,2}$ as well.






        share|cite|improve this answer











        $endgroup$
















          8












          8








          8





          $begingroup$

          Why are you testing reflexivity by looking at two different elements of $mathcal{X}$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.



          To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcal{R} x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.



          You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that ${1}mathcal R {1,2}$ does not contradict the fact that ${1,2}mathcal R {1,2}$ as well.






          share|cite|improve this answer











          $endgroup$



          Why are you testing reflexivity by looking at two different elements of $mathcal{X}$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.



          To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcal{R} x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.



          You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that ${1}mathcal R {1,2}$ does not contradict the fact that ${1,2}mathcal R {1,2}$ as well.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 10 hours ago

























          answered 11 hours ago









          Haris GusicHaris Gusic

          3,331525




          3,331525























              4












              $begingroup$

              A binary relation $R$ over a set $mathcal{X}$ is reflexive if every element of $mathcal{X}$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcal{R} text{ is reflexive iff } forall x in mathcal{X}, x mathcal{R} x$$



              Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.






              share|cite|improve this answer









              $endgroup$


















                4












                $begingroup$

                A binary relation $R$ over a set $mathcal{X}$ is reflexive if every element of $mathcal{X}$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcal{R} text{ is reflexive iff } forall x in mathcal{X}, x mathcal{R} x$$



                Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.






                share|cite|improve this answer









                $endgroup$
















                  4












                  4








                  4





                  $begingroup$

                  A binary relation $R$ over a set $mathcal{X}$ is reflexive if every element of $mathcal{X}$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcal{R} text{ is reflexive iff } forall x in mathcal{X}, x mathcal{R} x$$



                  Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.






                  share|cite|improve this answer









                  $endgroup$



                  A binary relation $R$ over a set $mathcal{X}$ is reflexive if every element of $mathcal{X}$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcal{R} text{ is reflexive iff } forall x in mathcal{X}, x mathcal{R} x$$



                  Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 11 hours ago









                  s0ulr3aper07s0ulr3aper07

                  658112




                  658112






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178532%2fhow-is-the-relation-the-smallest-element-is-the-same-reflexive%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Anexo:Material bélico de la Fuerza Aérea de Chile Índice Aeronaves Defensa...

                      Always On Availability groups resolving state after failover - Remote harden of transaction...

                      update json value to null Announcing the arrival of Valued Associate #679: Cesar Manara ...