Decision problem that can be verified but not run in n^2 timeA Problem on Time Complexity of AlgorithmsCan we...
Why is it that Bernie Sanders is always called a "socialist"?
What makes papers publishable in top-tier journals?
What is a DAG (Graph Theory)?
How does Leonard in "Memento" remember reading and writing?
How to make ice magic work from a scientific point of view?
Is there any risk in sharing info about technologies and products we use with a supplier?
Count repetitions of an array
Why was Lupin comfortable with saying Voldemort's name?
A Missing Symbol for This Logo
How do you catch Smeargle in Pokemon Go?
What is the wife of a henpecked husband called?
Can you tell from a blurry photo if focus was too close or too far?
Does diversity provide anything that meritocracy does not?
How to access internet and run apt-get through a middle server?
How to deal with possible delayed baggage?
How can I play a serial killer in a party of good PCs?
Do authors have to be politically correct in article-writing?
Separate environment for personal and development use under macOS
Is a new boolean field better than null reference when a value can be meaningfully absent?
Macro expansion inside href
Square Root Distance from Integers
After checking in online, how do I know whether I need to go show my passport at airport check-in?
Why zero tolerance on nudity in space?
What is the difference between rolling more dice versus fewer dice?
Decision problem that can be verified but not run in n^2 time
A Problem on Time Complexity of AlgorithmsCan we construct problems that can be solved in $Theta(n^c)$ time, and tested in $O(n)$ timeProblems that provably require quadratic timeIs there a decision algorithm with time complexity of Ө(n²)?Lower bounds and $P$ vs $NP$Is P the set of all algorithms whose run-time is $Oleft( n^{ O left( 1 right) }right)$?Does there exist a Turing-machine that runs in time $o(nlog n)$, but not $O(n)$?reducing $CLIQUE$ from decision to search problemHow is the Time Complexity of a Function Problem different than its corresponding Decision Problem?Show that NP is not equal to SPACE(n)
$begingroup$
A much much weaker idea similar to the P=NP question, is there a decision problem that can be verified in $O(n^2)$ time, but it can be proven that there is no algorithm that decides it $O(n^2)$ time?
time-complexity
$endgroup$
add a comment |
$begingroup$
A much much weaker idea similar to the P=NP question, is there a decision problem that can be verified in $O(n^2)$ time, but it can be proven that there is no algorithm that decides it $O(n^2)$ time?
time-complexity
$endgroup$
$begingroup$
In what model of computation?
$endgroup$
– Curtis F
3 hours ago
$begingroup$
@CurtisF if it matters then please write that up as an answer. I was under the impression that that sort of thing didn't matter within reason, or else how can one ask "does P=NP"?
$endgroup$
– while1fork
3 hours ago
4
$begingroup$
@while1fork. It does matter if you're giving precise timing estimates, like $O(n^2)$.
$endgroup$
– Rick Decker
3 hours ago
add a comment |
$begingroup$
A much much weaker idea similar to the P=NP question, is there a decision problem that can be verified in $O(n^2)$ time, but it can be proven that there is no algorithm that decides it $O(n^2)$ time?
time-complexity
$endgroup$
A much much weaker idea similar to the P=NP question, is there a decision problem that can be verified in $O(n^2)$ time, but it can be proven that there is no algorithm that decides it $O(n^2)$ time?
time-complexity
time-complexity
edited 4 hours ago
while1fork
asked 4 hours ago
while1forkwhile1fork
183
183
$begingroup$
In what model of computation?
$endgroup$
– Curtis F
3 hours ago
$begingroup$
@CurtisF if it matters then please write that up as an answer. I was under the impression that that sort of thing didn't matter within reason, or else how can one ask "does P=NP"?
$endgroup$
– while1fork
3 hours ago
4
$begingroup$
@while1fork. It does matter if you're giving precise timing estimates, like $O(n^2)$.
$endgroup$
– Rick Decker
3 hours ago
add a comment |
$begingroup$
In what model of computation?
$endgroup$
– Curtis F
3 hours ago
$begingroup$
@CurtisF if it matters then please write that up as an answer. I was under the impression that that sort of thing didn't matter within reason, or else how can one ask "does P=NP"?
$endgroup$
– while1fork
3 hours ago
4
$begingroup$
@while1fork. It does matter if you're giving precise timing estimates, like $O(n^2)$.
$endgroup$
– Rick Decker
3 hours ago
$begingroup$
In what model of computation?
$endgroup$
– Curtis F
3 hours ago
$begingroup$
In what model of computation?
$endgroup$
– Curtis F
3 hours ago
$begingroup$
@CurtisF if it matters then please write that up as an answer. I was under the impression that that sort of thing didn't matter within reason, or else how can one ask "does P=NP"?
$endgroup$
– while1fork
3 hours ago
$begingroup$
@CurtisF if it matters then please write that up as an answer. I was under the impression that that sort of thing didn't matter within reason, or else how can one ask "does P=NP"?
$endgroup$
– while1fork
3 hours ago
4
4
$begingroup$
@while1fork. It does matter if you're giving precise timing estimates, like $O(n^2)$.
$endgroup$
– Rick Decker
3 hours ago
$begingroup$
@while1fork. It does matter if you're giving precise timing estimates, like $O(n^2)$.
$endgroup$
– Rick Decker
3 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The answer depends a lot on the model of computation.
On one extreme: in the decision tree model, many lower bounds can be proven. For instance, consider the 3SUM problem. You can verify an alleged solution to the 3SUM problem in $O(n)$ time, but it's conjectured that no algorithm can solve the 3SUM problem in $O(n^{2-epsilon})$ time for any $epsilon>0$. One can prove this holds in some version of the algebraic decision tree model; one can prove that any algorithm to solve it in this model must take $Omega(n^2)$ time. This provides a gap of $O(n^2)$ vs $O(n)$ for solving vs verifying solutions, if the verifier is limited to the algebraic decision tree model. This is a pretty limited result; in this case, the model means that we're restricting attention to algorithms of a particular form. So, it doesn't rule out the possibility of some other algorithm (that does something weird) being faster.
On the other extreme: if we allow arbitrary (non-uniform) boolean circuits, then there is no explicitly stated function $f$ on $n$ bits where we can currently prove that every circuit for computing $f$ needs $ge 3.1n$ gates. In other words, this is saying that we have no clue how to prove lower bounds for circuits. Roughly speaking, we have no known result of a problem where we can prove that solving it requires circuits of size $omega(n)$. See, e.g., https://cstheory.stackexchange.com/a/8005/5038 and https://cstheory.stackexchange.com/q/21400/5038. So, given our current state of knowledge, we have no hope of proving a result like that if the model of computation is unrestricted boolean circuits.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "419"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f104894%2fdecision-problem-that-can-be-verified-but-not-run-in-n2-time%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The answer depends a lot on the model of computation.
On one extreme: in the decision tree model, many lower bounds can be proven. For instance, consider the 3SUM problem. You can verify an alleged solution to the 3SUM problem in $O(n)$ time, but it's conjectured that no algorithm can solve the 3SUM problem in $O(n^{2-epsilon})$ time for any $epsilon>0$. One can prove this holds in some version of the algebraic decision tree model; one can prove that any algorithm to solve it in this model must take $Omega(n^2)$ time. This provides a gap of $O(n^2)$ vs $O(n)$ for solving vs verifying solutions, if the verifier is limited to the algebraic decision tree model. This is a pretty limited result; in this case, the model means that we're restricting attention to algorithms of a particular form. So, it doesn't rule out the possibility of some other algorithm (that does something weird) being faster.
On the other extreme: if we allow arbitrary (non-uniform) boolean circuits, then there is no explicitly stated function $f$ on $n$ bits where we can currently prove that every circuit for computing $f$ needs $ge 3.1n$ gates. In other words, this is saying that we have no clue how to prove lower bounds for circuits. Roughly speaking, we have no known result of a problem where we can prove that solving it requires circuits of size $omega(n)$. See, e.g., https://cstheory.stackexchange.com/a/8005/5038 and https://cstheory.stackexchange.com/q/21400/5038. So, given our current state of knowledge, we have no hope of proving a result like that if the model of computation is unrestricted boolean circuits.
$endgroup$
add a comment |
$begingroup$
The answer depends a lot on the model of computation.
On one extreme: in the decision tree model, many lower bounds can be proven. For instance, consider the 3SUM problem. You can verify an alleged solution to the 3SUM problem in $O(n)$ time, but it's conjectured that no algorithm can solve the 3SUM problem in $O(n^{2-epsilon})$ time for any $epsilon>0$. One can prove this holds in some version of the algebraic decision tree model; one can prove that any algorithm to solve it in this model must take $Omega(n^2)$ time. This provides a gap of $O(n^2)$ vs $O(n)$ for solving vs verifying solutions, if the verifier is limited to the algebraic decision tree model. This is a pretty limited result; in this case, the model means that we're restricting attention to algorithms of a particular form. So, it doesn't rule out the possibility of some other algorithm (that does something weird) being faster.
On the other extreme: if we allow arbitrary (non-uniform) boolean circuits, then there is no explicitly stated function $f$ on $n$ bits where we can currently prove that every circuit for computing $f$ needs $ge 3.1n$ gates. In other words, this is saying that we have no clue how to prove lower bounds for circuits. Roughly speaking, we have no known result of a problem where we can prove that solving it requires circuits of size $omega(n)$. See, e.g., https://cstheory.stackexchange.com/a/8005/5038 and https://cstheory.stackexchange.com/q/21400/5038. So, given our current state of knowledge, we have no hope of proving a result like that if the model of computation is unrestricted boolean circuits.
$endgroup$
add a comment |
$begingroup$
The answer depends a lot on the model of computation.
On one extreme: in the decision tree model, many lower bounds can be proven. For instance, consider the 3SUM problem. You can verify an alleged solution to the 3SUM problem in $O(n)$ time, but it's conjectured that no algorithm can solve the 3SUM problem in $O(n^{2-epsilon})$ time for any $epsilon>0$. One can prove this holds in some version of the algebraic decision tree model; one can prove that any algorithm to solve it in this model must take $Omega(n^2)$ time. This provides a gap of $O(n^2)$ vs $O(n)$ for solving vs verifying solutions, if the verifier is limited to the algebraic decision tree model. This is a pretty limited result; in this case, the model means that we're restricting attention to algorithms of a particular form. So, it doesn't rule out the possibility of some other algorithm (that does something weird) being faster.
On the other extreme: if we allow arbitrary (non-uniform) boolean circuits, then there is no explicitly stated function $f$ on $n$ bits where we can currently prove that every circuit for computing $f$ needs $ge 3.1n$ gates. In other words, this is saying that we have no clue how to prove lower bounds for circuits. Roughly speaking, we have no known result of a problem where we can prove that solving it requires circuits of size $omega(n)$. See, e.g., https://cstheory.stackexchange.com/a/8005/5038 and https://cstheory.stackexchange.com/q/21400/5038. So, given our current state of knowledge, we have no hope of proving a result like that if the model of computation is unrestricted boolean circuits.
$endgroup$
The answer depends a lot on the model of computation.
On one extreme: in the decision tree model, many lower bounds can be proven. For instance, consider the 3SUM problem. You can verify an alleged solution to the 3SUM problem in $O(n)$ time, but it's conjectured that no algorithm can solve the 3SUM problem in $O(n^{2-epsilon})$ time for any $epsilon>0$. One can prove this holds in some version of the algebraic decision tree model; one can prove that any algorithm to solve it in this model must take $Omega(n^2)$ time. This provides a gap of $O(n^2)$ vs $O(n)$ for solving vs verifying solutions, if the verifier is limited to the algebraic decision tree model. This is a pretty limited result; in this case, the model means that we're restricting attention to algorithms of a particular form. So, it doesn't rule out the possibility of some other algorithm (that does something weird) being faster.
On the other extreme: if we allow arbitrary (non-uniform) boolean circuits, then there is no explicitly stated function $f$ on $n$ bits where we can currently prove that every circuit for computing $f$ needs $ge 3.1n$ gates. In other words, this is saying that we have no clue how to prove lower bounds for circuits. Roughly speaking, we have no known result of a problem where we can prove that solving it requires circuits of size $omega(n)$. See, e.g., https://cstheory.stackexchange.com/a/8005/5038 and https://cstheory.stackexchange.com/q/21400/5038. So, given our current state of knowledge, we have no hope of proving a result like that if the model of computation is unrestricted boolean circuits.
answered 3 hours ago
D.W.♦D.W.
99.8k12122286
99.8k12122286
add a comment |
add a comment |
Thanks for contributing an answer to Computer Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f104894%2fdecision-problem-that-can-be-verified-but-not-run-in-n2-time%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
In what model of computation?
$endgroup$
– Curtis F
3 hours ago
$begingroup$
@CurtisF if it matters then please write that up as an answer. I was under the impression that that sort of thing didn't matter within reason, or else how can one ask "does P=NP"?
$endgroup$
– while1fork
3 hours ago
4
$begingroup$
@while1fork. It does matter if you're giving precise timing estimates, like $O(n^2)$.
$endgroup$
– Rick Decker
3 hours ago