How does one use the Nerode-Myhill theorem to prove that a language is regular?How I can find all equivalence...

How to know if I am a 'Real Developer'

Identical projects by students at two different colleges: still plagiarism?

Badly designed reimbursement form. What does that say about the company?

Found a major flaw in paper from home university – to which I would like to return

Does an increasing sequence of reals converge if the difference of consecutive terms approaches zero?

Why don't hotels offer (at least) 1 kitchen bookable by any guest?

How can a kingdom keep the secret of a missing monarchy from the public?

Does a star need to be inside a galaxy?

Which was the first story to feature helmets which reads your mind to control a machine?

Negotiating 1-year delay to my Assistant Professor Offer

How does one use the Nerode-Myhill theorem to prove that a language is regular?

Why would you use 2 alternate layout buttons instead of 1, when only one can be selected at once

Is layered encryption more secure than long passwords?

Bitcoin automatically diverted to bech32 address

Why is Shelob considered evil?

Why are energy weapons seen as more acceptable in children's shows than guns that fire bullets?

How to use the viewer node?

How can guns be countered by melee combat without raw-ability or exceptional explanations?

How to not forget my phone in the bathroom?

Why does finding small effects in large studies indicate publication bias?

Was Opportunity's last message to Earth "My battery is low and it's getting dark"?

multiple price sets?

What have we got?

Why there is no EEPROM in STM32F4 MCUs



How does one use the Nerode-Myhill theorem to prove that a language is regular?


How I can find all equivalence classes by Myhill-Nerode?finding separating words (Nerode)How to prove that a language is not regular?Undergrad resources for identifying regular languages with Myhill-Nerode matricesunion of two equivalence classes (Myhill–Nerode theorem)A Myhill-Nerode type characterization of the regular languages using fooling sets?Non-regularity of the set of primes in unary encoding using Myhill-NerodeHow do I show that an equivalence class of a language containing an empty string is infiniteShow that language generated by grammar is regularHow do you prove that the set of decimal representation of the 4 divisble natural numbers is regular?Proving that L is not regular by showing that $equiv_L$ has infinite indexHow I can find all equivalence classes by Myhill-Nerode?













1












$begingroup$


Showing that a language is not regular is straight-forward, because all one needs to do is find an infinite set of inputs which has an injective mapping to the set of equivalence classes which compose that language.



How does one show that the set of equivalence classes of $L$ is finite? For instance, how would one show that the simple language $L = {s: |s| equiv 0 mod 2}$ has a finite number of equivalence classes?



I think that showing that there is a surjective mapping is not sufficient, because the image may still be of infinite size.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Showing that a language is not regular is straight-forward, because all one needs to do is find an infinite set of inputs which has an injective mapping to the set of equivalence classes which compose that language.



    How does one show that the set of equivalence classes of $L$ is finite? For instance, how would one show that the simple language $L = {s: |s| equiv 0 mod 2}$ has a finite number of equivalence classes?



    I think that showing that there is a surjective mapping is not sufficient, because the image may still be of infinite size.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Showing that a language is not regular is straight-forward, because all one needs to do is find an infinite set of inputs which has an injective mapping to the set of equivalence classes which compose that language.



      How does one show that the set of equivalence classes of $L$ is finite? For instance, how would one show that the simple language $L = {s: |s| equiv 0 mod 2}$ has a finite number of equivalence classes?



      I think that showing that there is a surjective mapping is not sufficient, because the image may still be of infinite size.










      share|cite|improve this question









      $endgroup$




      Showing that a language is not regular is straight-forward, because all one needs to do is find an infinite set of inputs which has an injective mapping to the set of equivalence classes which compose that language.



      How does one show that the set of equivalence classes of $L$ is finite? For instance, how would one show that the simple language $L = {s: |s| equiv 0 mod 2}$ has a finite number of equivalence classes?



      I think that showing that there is a surjective mapping is not sufficient, because the image may still be of infinite size.







      complexity-theory computability regular-languages






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 4 hours ago









      AleksandrAleksandr

      153




      153






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          It is just as straightforward to show a language is regular using Nerod-Myhill theorem as to show a language is not regular using that theorem since Nerode-Myhill theorem characterizes when a language is a regular.



          For example, let us take the simple language $L={s: |s|equiv 0 text{ (mod 2)}}$. There are two equivalent classes of $L$, assuming $a$ is a letter in the alphabet.




          • $left[epsilonright]_{equiv_{L}}=left{s: |s|equiv 0text{ (mod 2)}right}$

          • $left[aright]_{equiv_{L}}=left{s: |s|equiv 1text{ (mod 2)}right}$


          It should be easy for you to show that the above two classes are well-defined equivalence classes of $L$. There are no other equivalence class of $L$, since every word belongs to one of two classes. If a word is of even length, it belongs to class $left[epsilonright]_{equiv_{L}}$; otherwise, it belongs to class $left[aright]_{equiv_{L}}$.



          Hence, there are two equivalence classes of $L$ in total. That is, the number of equivalence classes of $L$ is finite. According to the Nerode-Myhill theorem, $L$ must be regular.




          I think that showing that there is a surjective mapping is not sufficient, because the image may still be of infinite size.




          I am not sure which surjective mapping you are talking about.



          As you can see from the example above, it is enough to show that the union of the finitely many equivalence classes you have found contains all words. Why? If we have another equivalence class $E,$ let $win E$. Then $w$ must belong to $F$, one of the equivalence classes you have found. Since $E$ and $F$ share one word, they are the same equivalence class. That is, $E$ has been found.



          You may want to check a few related questions and answers such as finding separating words (Nerode) and how I can find all equivalence classes by Myhill-Nerode?.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "419"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f104571%2fhow-does-one-use-the-nerode-myhill-theorem-to-prove-that-a-language-is-regular%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            It is just as straightforward to show a language is regular using Nerod-Myhill theorem as to show a language is not regular using that theorem since Nerode-Myhill theorem characterizes when a language is a regular.



            For example, let us take the simple language $L={s: |s|equiv 0 text{ (mod 2)}}$. There are two equivalent classes of $L$, assuming $a$ is a letter in the alphabet.




            • $left[epsilonright]_{equiv_{L}}=left{s: |s|equiv 0text{ (mod 2)}right}$

            • $left[aright]_{equiv_{L}}=left{s: |s|equiv 1text{ (mod 2)}right}$


            It should be easy for you to show that the above two classes are well-defined equivalence classes of $L$. There are no other equivalence class of $L$, since every word belongs to one of two classes. If a word is of even length, it belongs to class $left[epsilonright]_{equiv_{L}}$; otherwise, it belongs to class $left[aright]_{equiv_{L}}$.



            Hence, there are two equivalence classes of $L$ in total. That is, the number of equivalence classes of $L$ is finite. According to the Nerode-Myhill theorem, $L$ must be regular.




            I think that showing that there is a surjective mapping is not sufficient, because the image may still be of infinite size.




            I am not sure which surjective mapping you are talking about.



            As you can see from the example above, it is enough to show that the union of the finitely many equivalence classes you have found contains all words. Why? If we have another equivalence class $E,$ let $win E$. Then $w$ must belong to $F$, one of the equivalence classes you have found. Since $E$ and $F$ share one word, they are the same equivalence class. That is, $E$ has been found.



            You may want to check a few related questions and answers such as finding separating words (Nerode) and how I can find all equivalence classes by Myhill-Nerode?.






            share|cite|improve this answer











            $endgroup$


















              3












              $begingroup$

              It is just as straightforward to show a language is regular using Nerod-Myhill theorem as to show a language is not regular using that theorem since Nerode-Myhill theorem characterizes when a language is a regular.



              For example, let us take the simple language $L={s: |s|equiv 0 text{ (mod 2)}}$. There are two equivalent classes of $L$, assuming $a$ is a letter in the alphabet.




              • $left[epsilonright]_{equiv_{L}}=left{s: |s|equiv 0text{ (mod 2)}right}$

              • $left[aright]_{equiv_{L}}=left{s: |s|equiv 1text{ (mod 2)}right}$


              It should be easy for you to show that the above two classes are well-defined equivalence classes of $L$. There are no other equivalence class of $L$, since every word belongs to one of two classes. If a word is of even length, it belongs to class $left[epsilonright]_{equiv_{L}}$; otherwise, it belongs to class $left[aright]_{equiv_{L}}$.



              Hence, there are two equivalence classes of $L$ in total. That is, the number of equivalence classes of $L$ is finite. According to the Nerode-Myhill theorem, $L$ must be regular.




              I think that showing that there is a surjective mapping is not sufficient, because the image may still be of infinite size.




              I am not sure which surjective mapping you are talking about.



              As you can see from the example above, it is enough to show that the union of the finitely many equivalence classes you have found contains all words. Why? If we have another equivalence class $E,$ let $win E$. Then $w$ must belong to $F$, one of the equivalence classes you have found. Since $E$ and $F$ share one word, they are the same equivalence class. That is, $E$ has been found.



              You may want to check a few related questions and answers such as finding separating words (Nerode) and how I can find all equivalence classes by Myhill-Nerode?.






              share|cite|improve this answer











              $endgroup$
















                3












                3








                3





                $begingroup$

                It is just as straightforward to show a language is regular using Nerod-Myhill theorem as to show a language is not regular using that theorem since Nerode-Myhill theorem characterizes when a language is a regular.



                For example, let us take the simple language $L={s: |s|equiv 0 text{ (mod 2)}}$. There are two equivalent classes of $L$, assuming $a$ is a letter in the alphabet.




                • $left[epsilonright]_{equiv_{L}}=left{s: |s|equiv 0text{ (mod 2)}right}$

                • $left[aright]_{equiv_{L}}=left{s: |s|equiv 1text{ (mod 2)}right}$


                It should be easy for you to show that the above two classes are well-defined equivalence classes of $L$. There are no other equivalence class of $L$, since every word belongs to one of two classes. If a word is of even length, it belongs to class $left[epsilonright]_{equiv_{L}}$; otherwise, it belongs to class $left[aright]_{equiv_{L}}$.



                Hence, there are two equivalence classes of $L$ in total. That is, the number of equivalence classes of $L$ is finite. According to the Nerode-Myhill theorem, $L$ must be regular.




                I think that showing that there is a surjective mapping is not sufficient, because the image may still be of infinite size.




                I am not sure which surjective mapping you are talking about.



                As you can see from the example above, it is enough to show that the union of the finitely many equivalence classes you have found contains all words. Why? If we have another equivalence class $E,$ let $win E$. Then $w$ must belong to $F$, one of the equivalence classes you have found. Since $E$ and $F$ share one word, they are the same equivalence class. That is, $E$ has been found.



                You may want to check a few related questions and answers such as finding separating words (Nerode) and how I can find all equivalence classes by Myhill-Nerode?.






                share|cite|improve this answer











                $endgroup$



                It is just as straightforward to show a language is regular using Nerod-Myhill theorem as to show a language is not regular using that theorem since Nerode-Myhill theorem characterizes when a language is a regular.



                For example, let us take the simple language $L={s: |s|equiv 0 text{ (mod 2)}}$. There are two equivalent classes of $L$, assuming $a$ is a letter in the alphabet.




                • $left[epsilonright]_{equiv_{L}}=left{s: |s|equiv 0text{ (mod 2)}right}$

                • $left[aright]_{equiv_{L}}=left{s: |s|equiv 1text{ (mod 2)}right}$


                It should be easy for you to show that the above two classes are well-defined equivalence classes of $L$. There are no other equivalence class of $L$, since every word belongs to one of two classes. If a word is of even length, it belongs to class $left[epsilonright]_{equiv_{L}}$; otherwise, it belongs to class $left[aright]_{equiv_{L}}$.



                Hence, there are two equivalence classes of $L$ in total. That is, the number of equivalence classes of $L$ is finite. According to the Nerode-Myhill theorem, $L$ must be regular.




                I think that showing that there is a surjective mapping is not sufficient, because the image may still be of infinite size.




                I am not sure which surjective mapping you are talking about.



                As you can see from the example above, it is enough to show that the union of the finitely many equivalence classes you have found contains all words. Why? If we have another equivalence class $E,$ let $win E$. Then $w$ must belong to $F$, one of the equivalence classes you have found. Since $E$ and $F$ share one word, they are the same equivalence class. That is, $E$ has been found.



                You may want to check a few related questions and answers such as finding separating words (Nerode) and how I can find all equivalence classes by Myhill-Nerode?.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 2 hours ago

























                answered 3 hours ago









                Apass.JackApass.Jack

                10.9k1939




                10.9k1939






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Computer Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f104571%2fhow-does-one-use-the-nerode-myhill-theorem-to-prove-that-a-language-is-regular%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Anexo:Material bélico de la Fuerza Aérea de Chile Índice Aeronaves Defensa...

                    Always On Availability groups resolving state after failover - Remote harden of transaction...

                    update json value to null Announcing the arrival of Valued Associate #679: Cesar Manara ...