A problem in Probability theoryIf $G(x)=P[Xgeq x]$ then $Xgeq c$ is equivalent to $G(X)leq G(c)$ $P$-almost...

How did Arya survive the stabbing?

Return the Closest Prime Number

Short story about space worker geeks who zone out by 'listening' to radiation from stars

How can a function with a hole (removable discontinuity) equal a function with no hole?

Opposite of a diet

Is expanding the research of a group into machine learning as a PhD student risky?

Do sorcerers' Subtle Spells require a skill check to be unseen?

What is the opposite of 'gravitas'?

How to write papers efficiently when English isn't my first language?

How do we know the LHC results are robust?

Replace character with another only if repeated and not part of a word

What is paid subscription needed for in Mortal Kombat 11?

Sequence of Tenses: Translating the subjunctive

Energy of the particles in the particle accelerator

How does buying out courses with grant money work?

Was a professor correct to chastise me for writing "Dear Prof. X" rather than "Dear Professor X"?

Failed to fetch jessie backports repository

Is there a good way to store credentials outside of a password manager?

Why escape if the_content isnt?

Anatomically Correct Strange Women In Ponds Distributing Swords

Arithmetic mean geometric mean inequality unclear

Crossing the line between justified force and brutality

How can I kill an app using Terminal?

Shortcut for value of this indefinite integral?



A problem in Probability theory


If $G(x)=P[Xgeq x]$ then $Xgeq c$ is equivalent to $G(X)leq G(c)$ $P$-almost surelyTrying to establish an inequality on probabilityCan some probability triple give rise to any probability distribution?Expectation of $mathbb{E}(X^{k+1})$Is PDF unique for a random variable $X$ in given probability space?Conditional expectation on different probability measureAverage of Random variables converges in probability.Range of a random variable is measurableIn probability theory what does the notation $int_{Omega} X(omega) P(domega)$ mean?Probability theory: Convergence













4












$begingroup$


This is a problem in KaiLai Chung's A Course in Probability Theory.




Given a nonnegative random variable $X$ defined on $Omega$, if $mathbb{E}(X^2)=1$ and $mathbb{E}(X)geq a >0$, prove that $$mathbb{P}(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.




Let $A={xin Omega:X(x)geq lambda a}$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_{A^c}X$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_{A^c}X^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Chebyshev might be useful.
    $endgroup$
    – copper.hat
    2 hours ago
















4












$begingroup$


This is a problem in KaiLai Chung's A Course in Probability Theory.




Given a nonnegative random variable $X$ defined on $Omega$, if $mathbb{E}(X^2)=1$ and $mathbb{E}(X)geq a >0$, prove that $$mathbb{P}(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.




Let $A={xin Omega:X(x)geq lambda a}$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_{A^c}X$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_{A^c}X^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Chebyshev might be useful.
    $endgroup$
    – copper.hat
    2 hours ago














4












4








4


1



$begingroup$


This is a problem in KaiLai Chung's A Course in Probability Theory.




Given a nonnegative random variable $X$ defined on $Omega$, if $mathbb{E}(X^2)=1$ and $mathbb{E}(X)geq a >0$, prove that $$mathbb{P}(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.




Let $A={xin Omega:X(x)geq lambda a}$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_{A^c}X$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_{A^c}X^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?










share|cite|improve this question









$endgroup$




This is a problem in KaiLai Chung's A Course in Probability Theory.




Given a nonnegative random variable $X$ defined on $Omega$, if $mathbb{E}(X^2)=1$ and $mathbb{E}(X)geq a >0$, prove that $$mathbb{P}(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.




Let $A={xin Omega:X(x)geq lambda a}$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_{A^c}X$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_{A^c}X^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?







probability integration lp-spaces






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 3 hours ago









Xin FuXin Fu

1568




1568












  • $begingroup$
    Chebyshev might be useful.
    $endgroup$
    – copper.hat
    2 hours ago


















  • $begingroup$
    Chebyshev might be useful.
    $endgroup$
    – copper.hat
    2 hours ago
















$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
2 hours ago




$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
2 hours ago










1 Answer
1






active

oldest

votes


















5












$begingroup$

You have
$$
alemathbb E(X) = int_{Xlelambda a}X,dP + int_{Xgelambda a}X,dP,le,lambda a + int_{Xgelambda a}X,dP.
$$

Hence,
$$
a(1-lambda),le,int_{Xgelambda a}X,dP,le,left(int_{Xgelambda a}X^2,dPright)^{1/2}cdot P(Xgelambda a)^{1/2},le,P(Xgelambda a)^{1/2}.
$$

Square this and you're done.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you very much!
    $endgroup$
    – Xin Fu
    2 hours ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165418%2fa-problem-in-probability-theory%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

You have
$$
alemathbb E(X) = int_{Xlelambda a}X,dP + int_{Xgelambda a}X,dP,le,lambda a + int_{Xgelambda a}X,dP.
$$

Hence,
$$
a(1-lambda),le,int_{Xgelambda a}X,dP,le,left(int_{Xgelambda a}X^2,dPright)^{1/2}cdot P(Xgelambda a)^{1/2},le,P(Xgelambda a)^{1/2}.
$$

Square this and you're done.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you very much!
    $endgroup$
    – Xin Fu
    2 hours ago
















5












$begingroup$

You have
$$
alemathbb E(X) = int_{Xlelambda a}X,dP + int_{Xgelambda a}X,dP,le,lambda a + int_{Xgelambda a}X,dP.
$$

Hence,
$$
a(1-lambda),le,int_{Xgelambda a}X,dP,le,left(int_{Xgelambda a}X^2,dPright)^{1/2}cdot P(Xgelambda a)^{1/2},le,P(Xgelambda a)^{1/2}.
$$

Square this and you're done.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you very much!
    $endgroup$
    – Xin Fu
    2 hours ago














5












5








5





$begingroup$

You have
$$
alemathbb E(X) = int_{Xlelambda a}X,dP + int_{Xgelambda a}X,dP,le,lambda a + int_{Xgelambda a}X,dP.
$$

Hence,
$$
a(1-lambda),le,int_{Xgelambda a}X,dP,le,left(int_{Xgelambda a}X^2,dPright)^{1/2}cdot P(Xgelambda a)^{1/2},le,P(Xgelambda a)^{1/2}.
$$

Square this and you're done.






share|cite|improve this answer









$endgroup$



You have
$$
alemathbb E(X) = int_{Xlelambda a}X,dP + int_{Xgelambda a}X,dP,le,lambda a + int_{Xgelambda a}X,dP.
$$

Hence,
$$
a(1-lambda),le,int_{Xgelambda a}X,dP,le,left(int_{Xgelambda a}X^2,dPright)^{1/2}cdot P(Xgelambda a)^{1/2},le,P(Xgelambda a)^{1/2}.
$$

Square this and you're done.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 2 hours ago









amsmathamsmath

3,364419




3,364419












  • $begingroup$
    Thank you very much!
    $endgroup$
    – Xin Fu
    2 hours ago


















  • $begingroup$
    Thank you very much!
    $endgroup$
    – Xin Fu
    2 hours ago
















$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago




$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165418%2fa-problem-in-probability-theory%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

ORA-01691 (unable to extend lob segment) even though my tablespace has AUTOEXTEND onORA-01692: unable to...

Always On Availability groups resolving state after failover - Remote harden of transaction...

Circunscripción electoral de Guipúzcoa Referencias Menú de navegaciónLas claves del sistema electoral en...