Cauchy Sequence Characterized only By Directly Neighbouring Sequence Members Announcing the...
Windows 10: How to Lock (not sleep) laptop on lid close?
Is there a documented rationale why the House Ways and Means chairman can demand tax info?
Estimated State payment too big --> money back; + 2018 Tax Reform
Why don't the Weasley twins use magic outside of school if the Trace can only find the location of spells cast?
Stop battery usage [Ubuntu 18]
Can a monk deflect thrown melee weapons?
Area of a 2D convex hull
Array/tabular for long multiplication
Cauchy Sequence Characterized only By Directly Neighbouring Sequence Members
How are presidential pardons supposed to be used?
Simulating Exploding Dice
Mortgage adviser recommends a longer term than necessary combined with overpayments
What computer would be fastest for Mathematica Home Edition?
When is phishing education going too far?
How can players take actions together that are impossible otherwise?
Problem when applying foreach loop
Is there a service that would inform me whenever a new direct route is scheduled from a given airport?
Notation for two qubit composite product state
I'm thinking of a number
I'm having difficulty getting my players to do stuff in a sandbox campaign
Why use gamma over alpha radiation?
Who can trigger ship-wide alerts in Star Trek?
Slither Like a Snake
New Order #5: where Fibonacci and Beatty meet at Wythoff
Cauchy Sequence Characterized only By Directly Neighbouring Sequence Members
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Series constructed from a cauchy sequenceRelations among notions of convergenceCauchy Sequence proof with boundsProof review - (lack of rigour?) Convergent sequence iff Cauchy without Bolzano-WeierstrassProof verification regarding whether a certain property of a sequence implies that it is Cauchy.Why is the sequence $x(n) = log n$ **not** Cauchy?Mathematical Analysis Cauchy SequenceThat a sequence is Cauchy implies it's bounded.Determine if this specific sequence is a Cauchy sequenceCauchy sequence and boundedness
$begingroup$
Let $(a_n)$ be a sequence of real numbers, for which it holds, that
$$ lim_{n rightarrow infty} lvert a_{n+1}-a_n rvert = 0. $$ Does this already imply, that $(a_n)$ is a Cauchy sequence?
limits cauchy-sequences
$endgroup$
add a comment |
$begingroup$
Let $(a_n)$ be a sequence of real numbers, for which it holds, that
$$ lim_{n rightarrow infty} lvert a_{n+1}-a_n rvert = 0. $$ Does this already imply, that $(a_n)$ is a Cauchy sequence?
limits cauchy-sequences
$endgroup$
add a comment |
$begingroup$
Let $(a_n)$ be a sequence of real numbers, for which it holds, that
$$ lim_{n rightarrow infty} lvert a_{n+1}-a_n rvert = 0. $$ Does this already imply, that $(a_n)$ is a Cauchy sequence?
limits cauchy-sequences
$endgroup$
Let $(a_n)$ be a sequence of real numbers, for which it holds, that
$$ lim_{n rightarrow infty} lvert a_{n+1}-a_n rvert = 0. $$ Does this already imply, that $(a_n)$ is a Cauchy sequence?
limits cauchy-sequences
limits cauchy-sequences
asked 3 hours ago
Joker123Joker123
632313
632313
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Unfortunately not. Consider
$$a_n:=sum_{i=1}^nfrac{1}{i}.$$
We find $a_{n+1}-a_n=1/(n+1)to 0,$ but $lim_{ntoinfty}a_n=infty,$ hence ${a_n}_{ninmathbb{N}}$ is not a cauchy sequence.
$endgroup$
add a comment |
$begingroup$
No. The sequence $a_n=sum_{k=1}^nfrac{1}{k}$ is a counterexample.
$endgroup$
add a comment |
$begingroup$
Counterexample: $a_n = sqrt{n}$. Clearly this sequence does not converge. But
$$
a_{n+1} - a_{n} = sqrt{n+1} - sqrt{n} = frac{(sqrt{n+1} - sqrt{n})(sqrt{n+1} + sqrt{n})}{(sqrt{n+1} + sqrt{n})} = frac{1}{sqrt{n+1} + sqrt{n}} to 0 , .
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188087%2fcauchy-sequence-characterized-only-by-directly-neighbouring-sequence-members%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Unfortunately not. Consider
$$a_n:=sum_{i=1}^nfrac{1}{i}.$$
We find $a_{n+1}-a_n=1/(n+1)to 0,$ but $lim_{ntoinfty}a_n=infty,$ hence ${a_n}_{ninmathbb{N}}$ is not a cauchy sequence.
$endgroup$
add a comment |
$begingroup$
Unfortunately not. Consider
$$a_n:=sum_{i=1}^nfrac{1}{i}.$$
We find $a_{n+1}-a_n=1/(n+1)to 0,$ but $lim_{ntoinfty}a_n=infty,$ hence ${a_n}_{ninmathbb{N}}$ is not a cauchy sequence.
$endgroup$
add a comment |
$begingroup$
Unfortunately not. Consider
$$a_n:=sum_{i=1}^nfrac{1}{i}.$$
We find $a_{n+1}-a_n=1/(n+1)to 0,$ but $lim_{ntoinfty}a_n=infty,$ hence ${a_n}_{ninmathbb{N}}$ is not a cauchy sequence.
$endgroup$
Unfortunately not. Consider
$$a_n:=sum_{i=1}^nfrac{1}{i}.$$
We find $a_{n+1}-a_n=1/(n+1)to 0,$ but $lim_{ntoinfty}a_n=infty,$ hence ${a_n}_{ninmathbb{N}}$ is not a cauchy sequence.
edited 3 hours ago
HAMIDINE SOUMARE
2,208214
2,208214
answered 3 hours ago
MelodyMelody
1,27012
1,27012
add a comment |
add a comment |
$begingroup$
No. The sequence $a_n=sum_{k=1}^nfrac{1}{k}$ is a counterexample.
$endgroup$
add a comment |
$begingroup$
No. The sequence $a_n=sum_{k=1}^nfrac{1}{k}$ is a counterexample.
$endgroup$
add a comment |
$begingroup$
No. The sequence $a_n=sum_{k=1}^nfrac{1}{k}$ is a counterexample.
$endgroup$
No. The sequence $a_n=sum_{k=1}^nfrac{1}{k}$ is a counterexample.
answered 3 hours ago
MarkMark
10.6k1622
10.6k1622
add a comment |
add a comment |
$begingroup$
Counterexample: $a_n = sqrt{n}$. Clearly this sequence does not converge. But
$$
a_{n+1} - a_{n} = sqrt{n+1} - sqrt{n} = frac{(sqrt{n+1} - sqrt{n})(sqrt{n+1} + sqrt{n})}{(sqrt{n+1} + sqrt{n})} = frac{1}{sqrt{n+1} + sqrt{n}} to 0 , .
$$
$endgroup$
add a comment |
$begingroup$
Counterexample: $a_n = sqrt{n}$. Clearly this sequence does not converge. But
$$
a_{n+1} - a_{n} = sqrt{n+1} - sqrt{n} = frac{(sqrt{n+1} - sqrt{n})(sqrt{n+1} + sqrt{n})}{(sqrt{n+1} + sqrt{n})} = frac{1}{sqrt{n+1} + sqrt{n}} to 0 , .
$$
$endgroup$
add a comment |
$begingroup$
Counterexample: $a_n = sqrt{n}$. Clearly this sequence does not converge. But
$$
a_{n+1} - a_{n} = sqrt{n+1} - sqrt{n} = frac{(sqrt{n+1} - sqrt{n})(sqrt{n+1} + sqrt{n})}{(sqrt{n+1} + sqrt{n})} = frac{1}{sqrt{n+1} + sqrt{n}} to 0 , .
$$
$endgroup$
Counterexample: $a_n = sqrt{n}$. Clearly this sequence does not converge. But
$$
a_{n+1} - a_{n} = sqrt{n+1} - sqrt{n} = frac{(sqrt{n+1} - sqrt{n})(sqrt{n+1} + sqrt{n})}{(sqrt{n+1} + sqrt{n})} = frac{1}{sqrt{n+1} + sqrt{n}} to 0 , .
$$
answered 2 hours ago
Hans EnglerHans Engler
10.7k11836
10.7k11836
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188087%2fcauchy-sequence-characterized-only-by-directly-neighbouring-sequence-members%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown