Definite integral giving negative value as a result?Why do I get a negative value for this integral?Solving a...

Is it possible to do 50 km distance without any previous training?

Can I ask the recruiters in my resume to put the reason why I am rejected?

Why is 150k or 200k jobs considered good when there's 300k+ births a month?

Is it unprofessional to ask if a job posting on GlassDoor is real?

How much of data wrangling is a data scientist's job?

What's that red-plus icon near a text?

What are these boxed doors outside store fronts in New York?

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

Why is consensus so controversial in Britain?

Why does Kotter return in Welcome Back Kotter?

Cross compiling for RPi - error while loading shared libraries

Can I make popcorn with any corn?

dbcc cleantable batch size explanation

Are astronomers waiting to see something in an image from a gravitational lens that they've already seen in an adjacent image?

Intersection point of 2 lines defined by 2 points each

If human space travel is limited by the G force vulnerability, is there a way to counter G forces?

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

What defenses are there against being summoned by the Gate spell?

LaTeX: Why are digits allowed in environments, but forbidden in commands?

Can a vampire attack twice with their claws using Multiattack?

Perform and show arithmetic with LuaLaTeX

Is it legal for company to use my work email to pretend I still work there?

tikz convert color string to hex value

Today is the Center



Definite integral giving negative value as a result?


Why do I get a negative value for this integral?Solving a definite integralReal integral giving a complex resultProgression from indefinite integral to definite integral - $int_{0}^{2pi}frac{1}{5-3cos x} dx$Calculation of definite integralWithout calculating the integral decide if integral is positive or negative / which integral is bigger?Definite integral of absolute value function?Variable substitution in definite integralDefinite integral over singularityInner Product, Definite Integral













4












$begingroup$


I want to calculate definite integral



$$int_{-2}^{-1} frac{1}{x^2}e^{frac{1}{x}} dx = Omega$$



$$int frac{1}{x^2}e^{frac{1}{x}} dx=-e^{frac{1}{x}}+C$$



so:



$$Omega = [-e^{frac{1}{-2}}]-[-e^{frac{1}{-1}}]=-frac{1}{sqrt{e}} + frac{1}{e}$$



which is a negative value. I believe it should be positive.



What went wrong in the process?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
    $endgroup$
    – Eevee Trainer
    4 hours ago






  • 2




    $begingroup$
    Your antiderivative is completely incorrect: The derivative of $e^{1/x^2}$ is $e^{1/x^2} / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
    $endgroup$
    – T. Bongers
    4 hours ago












  • $begingroup$
    Thanks. I have fixed it now. I meant $int frac{1}{x^2} e^{frac{1}{x}}dx$.
    $endgroup$
    – weno
    4 hours ago








  • 5




    $begingroup$
    You flipped the interval's endpoints. $-2<-1$
    $endgroup$
    – mr_e_man
    4 hours ago










  • $begingroup$
    And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
    $endgroup$
    – Lubin
    4 hours ago
















4












$begingroup$


I want to calculate definite integral



$$int_{-2}^{-1} frac{1}{x^2}e^{frac{1}{x}} dx = Omega$$



$$int frac{1}{x^2}e^{frac{1}{x}} dx=-e^{frac{1}{x}}+C$$



so:



$$Omega = [-e^{frac{1}{-2}}]-[-e^{frac{1}{-1}}]=-frac{1}{sqrt{e}} + frac{1}{e}$$



which is a negative value. I believe it should be positive.



What went wrong in the process?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
    $endgroup$
    – Eevee Trainer
    4 hours ago






  • 2




    $begingroup$
    Your antiderivative is completely incorrect: The derivative of $e^{1/x^2}$ is $e^{1/x^2} / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
    $endgroup$
    – T. Bongers
    4 hours ago












  • $begingroup$
    Thanks. I have fixed it now. I meant $int frac{1}{x^2} e^{frac{1}{x}}dx$.
    $endgroup$
    – weno
    4 hours ago








  • 5




    $begingroup$
    You flipped the interval's endpoints. $-2<-1$
    $endgroup$
    – mr_e_man
    4 hours ago










  • $begingroup$
    And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
    $endgroup$
    – Lubin
    4 hours ago














4












4








4





$begingroup$


I want to calculate definite integral



$$int_{-2}^{-1} frac{1}{x^2}e^{frac{1}{x}} dx = Omega$$



$$int frac{1}{x^2}e^{frac{1}{x}} dx=-e^{frac{1}{x}}+C$$



so:



$$Omega = [-e^{frac{1}{-2}}]-[-e^{frac{1}{-1}}]=-frac{1}{sqrt{e}} + frac{1}{e}$$



which is a negative value. I believe it should be positive.



What went wrong in the process?










share|cite|improve this question











$endgroup$




I want to calculate definite integral



$$int_{-2}^{-1} frac{1}{x^2}e^{frac{1}{x}} dx = Omega$$



$$int frac{1}{x^2}e^{frac{1}{x}} dx=-e^{frac{1}{x}}+C$$



so:



$$Omega = [-e^{frac{1}{-2}}]-[-e^{frac{1}{-1}}]=-frac{1}{sqrt{e}} + frac{1}{e}$$



which is a negative value. I believe it should be positive.



What went wrong in the process?







calculus integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 4 hours ago









Eevee Trainer

9,92931740




9,92931740










asked 4 hours ago









wenoweno

39611




39611








  • 2




    $begingroup$
    How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
    $endgroup$
    – Eevee Trainer
    4 hours ago






  • 2




    $begingroup$
    Your antiderivative is completely incorrect: The derivative of $e^{1/x^2}$ is $e^{1/x^2} / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
    $endgroup$
    – T. Bongers
    4 hours ago












  • $begingroup$
    Thanks. I have fixed it now. I meant $int frac{1}{x^2} e^{frac{1}{x}}dx$.
    $endgroup$
    – weno
    4 hours ago








  • 5




    $begingroup$
    You flipped the interval's endpoints. $-2<-1$
    $endgroup$
    – mr_e_man
    4 hours ago










  • $begingroup$
    And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
    $endgroup$
    – Lubin
    4 hours ago














  • 2




    $begingroup$
    How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
    $endgroup$
    – Eevee Trainer
    4 hours ago






  • 2




    $begingroup$
    Your antiderivative is completely incorrect: The derivative of $e^{1/x^2}$ is $e^{1/x^2} / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
    $endgroup$
    – T. Bongers
    4 hours ago












  • $begingroup$
    Thanks. I have fixed it now. I meant $int frac{1}{x^2} e^{frac{1}{x}}dx$.
    $endgroup$
    – weno
    4 hours ago








  • 5




    $begingroup$
    You flipped the interval's endpoints. $-2<-1$
    $endgroup$
    – mr_e_man
    4 hours ago










  • $begingroup$
    And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
    $endgroup$
    – Lubin
    4 hours ago








2




2




$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
4 hours ago




$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
4 hours ago




2




2




$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^{1/x^2}$ is $e^{1/x^2} / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
4 hours ago






$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^{1/x^2}$ is $e^{1/x^2} / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
4 hours ago














$begingroup$
Thanks. I have fixed it now. I meant $int frac{1}{x^2} e^{frac{1}{x}}dx$.
$endgroup$
– weno
4 hours ago






$begingroup$
Thanks. I have fixed it now. I meant $int frac{1}{x^2} e^{frac{1}{x}}dx$.
$endgroup$
– weno
4 hours ago






5




5




$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
4 hours ago




$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
4 hours ago












$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
4 hours ago




$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
4 hours ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



$$int_a^b f(x)dx = F(b) - F(a)$$



when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176540%2fdefinite-integral-giving-negative-value-as-a-result%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



    $$int_a^b f(x)dx = F(b) - F(a)$$



    when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.






    share|cite|improve this answer









    $endgroup$


















      4












      $begingroup$

      What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



      $$int_a^b f(x)dx = F(b) - F(a)$$



      when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.






      share|cite|improve this answer









      $endgroup$
















        4












        4








        4





        $begingroup$

        What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



        $$int_a^b f(x)dx = F(b) - F(a)$$



        when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.






        share|cite|improve this answer









        $endgroup$



        What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:



        $$int_a^b f(x)dx = F(b) - F(a)$$



        when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 4 hours ago









        Eevee TrainerEevee Trainer

        9,92931740




        9,92931740






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176540%2fdefinite-integral-giving-negative-value-as-a-result%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Anexo:Material bélico de la Fuerza Aérea de Chile Índice Aeronaves Defensa...

            Always On Availability groups resolving state after failover - Remote harden of transaction...

            update json value to null Announcing the arrival of Valued Associate #679: Cesar Manara ...