Proving the given two groups are isomorphic The 2019 Stack Overflow Developer Survey Results...

Simulating Exploding Dice

Was credit for the black hole image misappropriated?

How to type a long/em dash `—`

How to support a colleague who finds meetings extremely tiring?

1960s short story making fun of James Bond-style spy fiction

Why can't devices on different VLANs, but on the same subnet, communicate?

Are spiders unable to hurt humans, especially very small spiders?

Make it rain characters

Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?

Is there a writing software that you can sort scenes like slides in PowerPoint?

What was the last x86 CPU that did not have the x87 floating-point unit built in?

Can a flute soloist sit?

What do I do when my TA workload is more than expected?

Working through the single responsibility principle (SRP) in Python when calls are expensive

Deal with toxic manager when you can't quit

What happens to a Warlock's expended Spell Slots when they gain a Level?

Circular reasoning in L'Hopital's rule

different output for groups and groups USERNAME after adding a username to a group

University's motivation for having tenure-track positions

How to determine omitted units in a publication

What to do when moving next to a bird sanctuary with a loosely-domesticated cat?

Would an alien lifeform be able to achieve space travel if lacking in vision?

Why doesn't a hydraulic lever violate conservation of energy?

Is this wall load bearing? Blueprints and photos attached



Proving the given two groups are isomorphic



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Are $(mathbb{R},+)$ and $(mathbb{C},+)$ isomorphic as additive groups?How do I show that these two presentations are isomorphic?Determine whether or not the two given groups are isomorphic.Surjective Homomorphisms of Isomorphic Abelian GroupsGroup isomorphism between two groups .How to use the first isomorphism theorem to show that two groups are isomorphic?Showing that these two groups are isomorphic?Showing that $2$ of the following groups are not isomorphicShow that the Two Given Groups are IsomorphicAre given groups isomorphic












1












$begingroup$


So I am given a group $mathbb R^3$ and a group $H$ = {$(y,0,0)|y in mathbb R$}. I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused what is going on. Can anyone provide some help on this?










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    So I am given a group $mathbb R^3$ and a group $H$ = {$(y,0,0)|y in mathbb R$}. I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused what is going on. Can anyone provide some help on this?










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      So I am given a group $mathbb R^3$ and a group $H$ = {$(y,0,0)|y in mathbb R$}. I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused what is going on. Can anyone provide some help on this?










      share|cite|improve this question









      $endgroup$




      So I am given a group $mathbb R^3$ and a group $H$ = {$(y,0,0)|y in mathbb R$}. I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused what is going on. Can anyone provide some help on this?







      abstract-algebra group-isomorphism






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 59 mins ago









      UfomammutUfomammut

      391314




      391314






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbb{R}^3 longrightarrow mathbb{R}^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = {(y,0,0) | y in mathbb{R} }$ is its kernel.
            If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
            Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). text{Moreover,} f(0,0,0) = (0,0)$
            The kernel of this map is seen to be all $(x,y,z) in mathbb{R}$ such that $y,z$ are $0$ , i.e., $H$.
            Hence first isomorphism theorem applies and $ mathbb{R}^3/H equiv mathbb{R}^2.$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
              $endgroup$
              – Ufomammut
              21 mins ago












            • $begingroup$
              Yes, that will also work.
              $endgroup$
              – Mayank Mishra
              17 mins ago












            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185816%2fproving-the-given-two-groups-are-isomorphic%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.






                share|cite|improve this answer









                $endgroup$



                The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 28 mins ago









                lEmlEm

                3,4521921




                3,4521921























                    2












                    $begingroup$

                    We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbb{R}^3 longrightarrow mathbb{R}^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = {(y,0,0) | y in mathbb{R} }$ is its kernel.
                    If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
                    Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). text{Moreover,} f(0,0,0) = (0,0)$
                    The kernel of this map is seen to be all $(x,y,z) in mathbb{R}$ such that $y,z$ are $0$ , i.e., $H$.
                    Hence first isomorphism theorem applies and $ mathbb{R}^3/H equiv mathbb{R}^2.$






                    share|cite|improve this answer











                    $endgroup$













                    • $begingroup$
                      I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                      $endgroup$
                      – Ufomammut
                      21 mins ago












                    • $begingroup$
                      Yes, that will also work.
                      $endgroup$
                      – Mayank Mishra
                      17 mins ago
















                    2












                    $begingroup$

                    We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbb{R}^3 longrightarrow mathbb{R}^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = {(y,0,0) | y in mathbb{R} }$ is its kernel.
                    If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
                    Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). text{Moreover,} f(0,0,0) = (0,0)$
                    The kernel of this map is seen to be all $(x,y,z) in mathbb{R}$ such that $y,z$ are $0$ , i.e., $H$.
                    Hence first isomorphism theorem applies and $ mathbb{R}^3/H equiv mathbb{R}^2.$






                    share|cite|improve this answer











                    $endgroup$













                    • $begingroup$
                      I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                      $endgroup$
                      – Ufomammut
                      21 mins ago












                    • $begingroup$
                      Yes, that will also work.
                      $endgroup$
                      – Mayank Mishra
                      17 mins ago














                    2












                    2








                    2





                    $begingroup$

                    We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbb{R}^3 longrightarrow mathbb{R}^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = {(y,0,0) | y in mathbb{R} }$ is its kernel.
                    If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
                    Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). text{Moreover,} f(0,0,0) = (0,0)$
                    The kernel of this map is seen to be all $(x,y,z) in mathbb{R}$ such that $y,z$ are $0$ , i.e., $H$.
                    Hence first isomorphism theorem applies and $ mathbb{R}^3/H equiv mathbb{R}^2.$






                    share|cite|improve this answer











                    $endgroup$



                    We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbb{R}^3 longrightarrow mathbb{R}^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = {(y,0,0) | y in mathbb{R} }$ is its kernel.
                    If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
                    Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). text{Moreover,} f(0,0,0) = (0,0)$
                    The kernel of this map is seen to be all $(x,y,z) in mathbb{R}$ such that $y,z$ are $0$ , i.e., $H$.
                    Hence first isomorphism theorem applies and $ mathbb{R}^3/H equiv mathbb{R}^2.$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 3 mins ago

























                    answered 22 mins ago









                    Mayank MishraMayank Mishra

                    1068




                    1068












                    • $begingroup$
                      I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                      $endgroup$
                      – Ufomammut
                      21 mins ago












                    • $begingroup$
                      Yes, that will also work.
                      $endgroup$
                      – Mayank Mishra
                      17 mins ago


















                    • $begingroup$
                      I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                      $endgroup$
                      – Ufomammut
                      21 mins ago












                    • $begingroup$
                      Yes, that will also work.
                      $endgroup$
                      – Mayank Mishra
                      17 mins ago
















                    $begingroup$
                    I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                    $endgroup$
                    – Ufomammut
                    21 mins ago






                    $begingroup$
                    I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                    $endgroup$
                    – Ufomammut
                    21 mins ago














                    $begingroup$
                    Yes, that will also work.
                    $endgroup$
                    – Mayank Mishra
                    17 mins ago




                    $begingroup$
                    Yes, that will also work.
                    $endgroup$
                    – Mayank Mishra
                    17 mins ago


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185816%2fproving-the-given-two-groups-are-isomorphic%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    ORA-01691 (unable to extend lob segment) even though my tablespace has AUTOEXTEND onORA-01692: unable to...

                    Always On Availability groups resolving state after failover - Remote harden of transaction...

                    Circunscripción electoral de Guipúzcoa Referencias Menú de navegaciónLas claves del sistema electoral en...