why is the limit of this expression equal to 1? The 2019 Stack Overflow Developer Survey...

Was credit for the black hole image misappropriated?

Would an alien lifeform be able to achieve space travel if lacking in vision?

Single author papers against my advisor's will?

why is the limit of this expression equal to 1?

If I score a critical hit on an 18 or higher, what are my chances of getting a critical hit if I roll 3d20?

What's the point in a preamp?

1960s short story making fun of James Bond-style spy fiction

Why can't wing-mounted spoilers be used to steepen approaches?

What aspect of planet Earth must be changed to prevent the industrial revolution?

Can I visit the Trinity College (Cambridge) library and see some of their rare books

How can a C program poll for user input while simultaneously performing other actions in a Linux environment?

Is there a way to generate uniformly distributed points on a sphere from a fixed amount of random real numbers per point?

How do spell lists change if the party levels up without taking a long rest?

First use of “packing” as in carrying a gun

Presidential Pardon

Could an empire control the whole planet with today's comunication methods?

Can each chord in a progression create its own key?

What is the role of 'For' here?

Simulating Exploding Dice

Sub-subscripts in strings cause different spacings than subscripts

Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?

ELI5: Why do they say that Israel would have been the fourth country to land a spacecraft on the Moon and why do they call it low cost?

60's-70's movie: home appliances revolting against the owners

Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?



why is the limit of this expression equal to 1?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Finding the limit of the following expressionReforming series expression for limit of e$lim_{x rightarrow infty}left(frac{pi}{2}-tan^{-1}xright)^{Largefrac{1}{x}}$ Why aren't these two limits equal when they should be?What is the value of this limit?limit of an expressionUsing a definite integral find the value of $lim_{nrightarrow infty }(frac{1}{n}+frac{1}{n+1}+…+frac{1}{2n})$Why is the following limit operation valid?Is this expression on limit valid and/or meaningful?Why does this limit equal 0?A Problem on the Limit of an Integral












1












$begingroup$


I found something which I find confusing.



$$
lim_{nrightarrow infty} frac{n!}{n^{k}(n-k)! } =1
$$



It was something I encountered while learning probability on this webpage.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    I found something which I find confusing.



    $$
    lim_{nrightarrow infty} frac{n!}{n^{k}(n-k)! } =1
    $$



    It was something I encountered while learning probability on this webpage.










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      2



      $begingroup$


      I found something which I find confusing.



      $$
      lim_{nrightarrow infty} frac{n!}{n^{k}(n-k)! } =1
      $$



      It was something I encountered while learning probability on this webpage.










      share|cite|improve this question











      $endgroup$




      I found something which I find confusing.



      $$
      lim_{nrightarrow infty} frac{n!}{n^{k}(n-k)! } =1
      $$



      It was something I encountered while learning probability on this webpage.







      limits






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 hours ago







      billyandr

















      asked 2 hours ago









      billyandrbillyandr

      155




      155






















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          It is rather obvious if you cancel the factorials:



          $$frac{n!}{n^{k}(n-k)! } =frac{overbrace{n(n-1)cdots (n-k+1)}^{k; factors}}{n^k}= 1cdot left(1-frac{1}{n}right)cdots left(1-frac{k-1}{n}right)stackrel{n to infty}{longrightarrow} 1$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much. I didn't know it was right there under my eyes.
            $endgroup$
            – billyandr
            1 hour ago










          • $begingroup$
            You are welcome. This "not seeing the obvious" just happens once in a while, I think, to all who do maths. So, it is good to have a math platform like this one. :-)
            $endgroup$
            – trancelocation
            1 hour ago





















          2












          $begingroup$

          $$a_n=frac{n!}{n^{k}(n-k)! }implies log(a_n)=log(n!)-k log(n)-log((n-k)!)$$



          Use Stirling approximation and continue with Taylor series to get
          $$log(a_n)=frac{k(1-k)}{2 n}+Oleft(frac{1}{n^2}right)$$ Continue with Taylor
          $$a_n=e^{log(a_n)}=1+frac{k(1-k)}{2 n}+Oleft(frac{1}{n^2}right)$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            This has already a slight touch of overkill, hasn't it? :-)
            $endgroup$
            – trancelocation
            1 hour ago










          • $begingroup$
            @trancelocation. You are totally right for the limit. One of my manias is to always look at the approach to the limit. Have a look at matheducators.stackexchange.com/questions/8339/… . Cheers :-)
            $endgroup$
            – Claude Leibovici
            1 hour ago














          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185830%2fwhy-is-the-limit-of-this-expression-equal-to-1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          It is rather obvious if you cancel the factorials:



          $$frac{n!}{n^{k}(n-k)! } =frac{overbrace{n(n-1)cdots (n-k+1)}^{k; factors}}{n^k}= 1cdot left(1-frac{1}{n}right)cdots left(1-frac{k-1}{n}right)stackrel{n to infty}{longrightarrow} 1$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much. I didn't know it was right there under my eyes.
            $endgroup$
            – billyandr
            1 hour ago










          • $begingroup$
            You are welcome. This "not seeing the obvious" just happens once in a while, I think, to all who do maths. So, it is good to have a math platform like this one. :-)
            $endgroup$
            – trancelocation
            1 hour ago


















          5












          $begingroup$

          It is rather obvious if you cancel the factorials:



          $$frac{n!}{n^{k}(n-k)! } =frac{overbrace{n(n-1)cdots (n-k+1)}^{k; factors}}{n^k}= 1cdot left(1-frac{1}{n}right)cdots left(1-frac{k-1}{n}right)stackrel{n to infty}{longrightarrow} 1$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much. I didn't know it was right there under my eyes.
            $endgroup$
            – billyandr
            1 hour ago










          • $begingroup$
            You are welcome. This "not seeing the obvious" just happens once in a while, I think, to all who do maths. So, it is good to have a math platform like this one. :-)
            $endgroup$
            – trancelocation
            1 hour ago
















          5












          5








          5





          $begingroup$

          It is rather obvious if you cancel the factorials:



          $$frac{n!}{n^{k}(n-k)! } =frac{overbrace{n(n-1)cdots (n-k+1)}^{k; factors}}{n^k}= 1cdot left(1-frac{1}{n}right)cdots left(1-frac{k-1}{n}right)stackrel{n to infty}{longrightarrow} 1$$






          share|cite|improve this answer









          $endgroup$



          It is rather obvious if you cancel the factorials:



          $$frac{n!}{n^{k}(n-k)! } =frac{overbrace{n(n-1)cdots (n-k+1)}^{k; factors}}{n^k}= 1cdot left(1-frac{1}{n}right)cdots left(1-frac{k-1}{n}right)stackrel{n to infty}{longrightarrow} 1$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 1 hour ago









          trancelocationtrancelocation

          14.1k1829




          14.1k1829












          • $begingroup$
            Thank you so much. I didn't know it was right there under my eyes.
            $endgroup$
            – billyandr
            1 hour ago










          • $begingroup$
            You are welcome. This "not seeing the obvious" just happens once in a while, I think, to all who do maths. So, it is good to have a math platform like this one. :-)
            $endgroup$
            – trancelocation
            1 hour ago




















          • $begingroup$
            Thank you so much. I didn't know it was right there under my eyes.
            $endgroup$
            – billyandr
            1 hour ago










          • $begingroup$
            You are welcome. This "not seeing the obvious" just happens once in a while, I think, to all who do maths. So, it is good to have a math platform like this one. :-)
            $endgroup$
            – trancelocation
            1 hour ago


















          $begingroup$
          Thank you so much. I didn't know it was right there under my eyes.
          $endgroup$
          – billyandr
          1 hour ago




          $begingroup$
          Thank you so much. I didn't know it was right there under my eyes.
          $endgroup$
          – billyandr
          1 hour ago












          $begingroup$
          You are welcome. This "not seeing the obvious" just happens once in a while, I think, to all who do maths. So, it is good to have a math platform like this one. :-)
          $endgroup$
          – trancelocation
          1 hour ago






          $begingroup$
          You are welcome. This "not seeing the obvious" just happens once in a while, I think, to all who do maths. So, it is good to have a math platform like this one. :-)
          $endgroup$
          – trancelocation
          1 hour ago













          2












          $begingroup$

          $$a_n=frac{n!}{n^{k}(n-k)! }implies log(a_n)=log(n!)-k log(n)-log((n-k)!)$$



          Use Stirling approximation and continue with Taylor series to get
          $$log(a_n)=frac{k(1-k)}{2 n}+Oleft(frac{1}{n^2}right)$$ Continue with Taylor
          $$a_n=e^{log(a_n)}=1+frac{k(1-k)}{2 n}+Oleft(frac{1}{n^2}right)$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            This has already a slight touch of overkill, hasn't it? :-)
            $endgroup$
            – trancelocation
            1 hour ago










          • $begingroup$
            @trancelocation. You are totally right for the limit. One of my manias is to always look at the approach to the limit. Have a look at matheducators.stackexchange.com/questions/8339/… . Cheers :-)
            $endgroup$
            – Claude Leibovici
            1 hour ago


















          2












          $begingroup$

          $$a_n=frac{n!}{n^{k}(n-k)! }implies log(a_n)=log(n!)-k log(n)-log((n-k)!)$$



          Use Stirling approximation and continue with Taylor series to get
          $$log(a_n)=frac{k(1-k)}{2 n}+Oleft(frac{1}{n^2}right)$$ Continue with Taylor
          $$a_n=e^{log(a_n)}=1+frac{k(1-k)}{2 n}+Oleft(frac{1}{n^2}right)$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            This has already a slight touch of overkill, hasn't it? :-)
            $endgroup$
            – trancelocation
            1 hour ago










          • $begingroup$
            @trancelocation. You are totally right for the limit. One of my manias is to always look at the approach to the limit. Have a look at matheducators.stackexchange.com/questions/8339/… . Cheers :-)
            $endgroup$
            – Claude Leibovici
            1 hour ago
















          2












          2








          2





          $begingroup$

          $$a_n=frac{n!}{n^{k}(n-k)! }implies log(a_n)=log(n!)-k log(n)-log((n-k)!)$$



          Use Stirling approximation and continue with Taylor series to get
          $$log(a_n)=frac{k(1-k)}{2 n}+Oleft(frac{1}{n^2}right)$$ Continue with Taylor
          $$a_n=e^{log(a_n)}=1+frac{k(1-k)}{2 n}+Oleft(frac{1}{n^2}right)$$






          share|cite|improve this answer









          $endgroup$



          $$a_n=frac{n!}{n^{k}(n-k)! }implies log(a_n)=log(n!)-k log(n)-log((n-k)!)$$



          Use Stirling approximation and continue with Taylor series to get
          $$log(a_n)=frac{k(1-k)}{2 n}+Oleft(frac{1}{n^2}right)$$ Continue with Taylor
          $$a_n=e^{log(a_n)}=1+frac{k(1-k)}{2 n}+Oleft(frac{1}{n^2}right)$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 1 hour ago









          Claude LeiboviciClaude Leibovici

          125k1158135




          125k1158135












          • $begingroup$
            This has already a slight touch of overkill, hasn't it? :-)
            $endgroup$
            – trancelocation
            1 hour ago










          • $begingroup$
            @trancelocation. You are totally right for the limit. One of my manias is to always look at the approach to the limit. Have a look at matheducators.stackexchange.com/questions/8339/… . Cheers :-)
            $endgroup$
            – Claude Leibovici
            1 hour ago




















          • $begingroup$
            This has already a slight touch of overkill, hasn't it? :-)
            $endgroup$
            – trancelocation
            1 hour ago










          • $begingroup$
            @trancelocation. You are totally right for the limit. One of my manias is to always look at the approach to the limit. Have a look at matheducators.stackexchange.com/questions/8339/… . Cheers :-)
            $endgroup$
            – Claude Leibovici
            1 hour ago


















          $begingroup$
          This has already a slight touch of overkill, hasn't it? :-)
          $endgroup$
          – trancelocation
          1 hour ago




          $begingroup$
          This has already a slight touch of overkill, hasn't it? :-)
          $endgroup$
          – trancelocation
          1 hour ago












          $begingroup$
          @trancelocation. You are totally right for the limit. One of my manias is to always look at the approach to the limit. Have a look at matheducators.stackexchange.com/questions/8339/… . Cheers :-)
          $endgroup$
          – Claude Leibovici
          1 hour ago






          $begingroup$
          @trancelocation. You are totally right for the limit. One of my manias is to always look at the approach to the limit. Have a look at matheducators.stackexchange.com/questions/8339/… . Cheers :-)
          $endgroup$
          – Claude Leibovici
          1 hour ago




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185830%2fwhy-is-the-limit-of-this-expression-equal-to-1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Anexo:Material bélico de la Fuerza Aérea de Chile Índice Aeronaves Defensa...

          Always On Availability groups resolving state after failover - Remote harden of transaction...

          update json value to null Announcing the arrival of Valued Associate #679: Cesar Manara ...