Approximating irrational number to rational number$lim_{ntoinfty} f(2^n)$ for some very slowly increasing...
Offered money to buy a house, seller is asking for more to cover gap between their listing and mortgage owed
What was this official D&D 3.5e Lovecraft-flavored rulebook?
Is this toilet slogan correct usage of the English language?
How to indicate a cut out for a product window
How to bake one texture for one mesh with multiple textures blender 2.8
The screen of my macbook suddenly broken down how can I do to recover
How can "mimic phobia" be cured or prevented?
Closed-form expression for certain product
Why did the HMS Bounty go back to a time when whales are already rare?
Approximating irrational number to rational number
Pre-mixing cryogenic fuels and using only one fuel tank
Has any country ever had 2 former presidents in jail simultaneously?
How to implement a feedback to keep the DC gain at zero for this conceptual passive filter?
What are the purposes of autoencoders?
Why did the EU agree to delay the Brexit deadline?
Redundant comparison & "if" before assignment
Fear of getting stuck on one programming language / technology that is not used in my country
Freedom of speech and where it applies
Aragorn's "guise" in the Orthanc Stone
Yosemite Fire Rings - What to Expect?
What does chmod -u do?
What was the exact wording from Ivanhoe of this advice on how to free yourself from slavery?
Store Credit Card Information in Password Manager?
Creature in Shazam mid-credits scene?
Approximating irrational number to rational number
$lim_{ntoinfty} f(2^n)$ for some very slowly increasing function $f(n)$Hermite Interpolation of $e^x$. Strange behaviour when increasing the number of derivatives at interpolating points.Newton's Method, and approximating parameters for Bézier curves.Approximating Logs and Antilogs by handApproximating fractionsExistence of Irrational Number that has same $n$ digits of a given Rational Number.Finding Irrational Approximation for a given Rational Number.Atomic weights: rational or irrational?Does there exist infinitely many $mu$ which satisfy this:Approximating functions with rational functions
$begingroup$
I'm making a phone game, and I need to approximate $frac {log(5/4)}{log(3/2)}$ to a rational number $p/q$.
I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.
In the game, there's two way to upgrade ability. Type A gives additional $50%$ increase at once. and type B gives $25%$.
What I want to know is how many times of upgrade $(x,y)$ provides same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.
Can you provide me way to construct sequence $p_n$, $q_n$ which approximate the real number?
Thank you in advance.
approximation
$endgroup$
add a comment |
$begingroup$
I'm making a phone game, and I need to approximate $frac {log(5/4)}{log(3/2)}$ to a rational number $p/q$.
I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.
In the game, there's two way to upgrade ability. Type A gives additional $50%$ increase at once. and type B gives $25%$.
What I want to know is how many times of upgrade $(x,y)$ provides same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.
Can you provide me way to construct sequence $p_n$, $q_n$ which approximate the real number?
Thank you in advance.
approximation
$endgroup$
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac{55034}{100000}$ or $tfrac{5503}{10000}$. What's wrong with that?
$endgroup$
– amsmath
49 mins ago
1
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
47 mins ago
1
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
47 mins ago
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
45 mins ago
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
35 mins ago
add a comment |
$begingroup$
I'm making a phone game, and I need to approximate $frac {log(5/4)}{log(3/2)}$ to a rational number $p/q$.
I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.
In the game, there's two way to upgrade ability. Type A gives additional $50%$ increase at once. and type B gives $25%$.
What I want to know is how many times of upgrade $(x,y)$ provides same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.
Can you provide me way to construct sequence $p_n$, $q_n$ which approximate the real number?
Thank you in advance.
approximation
$endgroup$
I'm making a phone game, and I need to approximate $frac {log(5/4)}{log(3/2)}$ to a rational number $p/q$.
I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.
In the game, there's two way to upgrade ability. Type A gives additional $50%$ increase at once. and type B gives $25%$.
What I want to know is how many times of upgrade $(x,y)$ provides same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.
Can you provide me way to construct sequence $p_n$, $q_n$ which approximate the real number?
Thank you in advance.
approximation
approximation
edited 46 mins ago
Rócherz
2,9863821
2,9863821
asked 1 hour ago
MrTanorusMrTanorus
1928
1928
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac{55034}{100000}$ or $tfrac{5503}{10000}$. What's wrong with that?
$endgroup$
– amsmath
49 mins ago
1
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
47 mins ago
1
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
47 mins ago
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
45 mins ago
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
35 mins ago
add a comment |
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac{55034}{100000}$ or $tfrac{5503}{10000}$. What's wrong with that?
$endgroup$
– amsmath
49 mins ago
1
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
47 mins ago
1
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
47 mins ago
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
45 mins ago
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
35 mins ago
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac{55034}{100000}$ or $tfrac{5503}{10000}$. What's wrong with that?
$endgroup$
– amsmath
49 mins ago
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac{55034}{100000}$ or $tfrac{5503}{10000}$. What's wrong with that?
$endgroup$
– amsmath
49 mins ago
1
1
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
47 mins ago
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
47 mins ago
1
1
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
47 mins ago
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
47 mins ago
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
45 mins ago
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
45 mins ago
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
35 mins ago
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
35 mins ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac {891}{1619}approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.
$endgroup$
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1{cq^2}$ to the value approximated.
$endgroup$
– robjohn♦
1 min ago
add a comment |
$begingroup$
The continued fraction for $frac{logleft(frac54right)}{logleft(frac32right)}$ is
$$
{0;1,1,4,2,6,1,color{#C00}{10},143,3,dots}
$$
The convergents for this continued fraction are
$$
left{0,1,frac12,frac59,frac{11}{20},frac{71}{129},frac{82}{149},color{#C00}{frac{891}{1619}},frac{127495}{231666},frac{383376}{696617},dotsright}
$$
As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac{891}{1619}$ is closer than $frac1{143cdot1619^2}$ to $frac{logleft(frac54right)}{logleft(frac32right)}$.
$endgroup$
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
14 mins ago
add a comment |
$begingroup$
Running the extended Euclidean algorithm to find the continued fraction:
$$begin{array}{cc|cc}x&q&a&b\
hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^{-6} & 143 & 891 & -1619 \
1.25cdot 10^{-6} & 3 & -127495 & 231666end{array}$$
The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot frac{log(5/4)}{log(3/2)}approx 0.00679426$. The fraction $left|frac{log(5/4)}{log(3/2)}right|$ is approximated by $frac{|a_n|}{|b_n|}$, with increasing accuracy.
The formulas for building this table: $q_n = leftlfloor frac {x_{n-1}}{x_n}rightrfloor$, $x_{n+1}=x_{n-1}-q_nx_n$, $a_{n+1}=a_{n-1}-q_na_n$, $b_{n+1}=b_{n-1}-q_nb_n$. Initialize with $x_0=1$, $x_{-1}$ the quantity we're trying to estimate, $a_{-1}=b_0=0$, $a_0=b_{-1}=1$.
If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.
Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac{891}{1619}$ approximation.
It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac{11}{20}$ approximation.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160023%2fapproximating-irrational-number-to-rational-number%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac {891}{1619}approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.
$endgroup$
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1{cq^2}$ to the value approximated.
$endgroup$
– robjohn♦
1 min ago
add a comment |
$begingroup$
The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac {891}{1619}approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.
$endgroup$
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1{cq^2}$ to the value approximated.
$endgroup$
– robjohn♦
1 min ago
add a comment |
$begingroup$
The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac {891}{1619}approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.
$endgroup$
The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac {891}{1619}approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.
answered 41 mins ago
Ross MillikanRoss Millikan
300k24200374
300k24200374
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1{cq^2}$ to the value approximated.
$endgroup$
– robjohn♦
1 min ago
add a comment |
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1{cq^2}$ to the value approximated.
$endgroup$
– robjohn♦
1 min ago
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1{cq^2}$ to the value approximated.
$endgroup$
– robjohn♦
1 min ago
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1{cq^2}$ to the value approximated.
$endgroup$
– robjohn♦
1 min ago
add a comment |
$begingroup$
The continued fraction for $frac{logleft(frac54right)}{logleft(frac32right)}$ is
$$
{0;1,1,4,2,6,1,color{#C00}{10},143,3,dots}
$$
The convergents for this continued fraction are
$$
left{0,1,frac12,frac59,frac{11}{20},frac{71}{129},frac{82}{149},color{#C00}{frac{891}{1619}},frac{127495}{231666},frac{383376}{696617},dotsright}
$$
As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac{891}{1619}$ is closer than $frac1{143cdot1619^2}$ to $frac{logleft(frac54right)}{logleft(frac32right)}$.
$endgroup$
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
14 mins ago
add a comment |
$begingroup$
The continued fraction for $frac{logleft(frac54right)}{logleft(frac32right)}$ is
$$
{0;1,1,4,2,6,1,color{#C00}{10},143,3,dots}
$$
The convergents for this continued fraction are
$$
left{0,1,frac12,frac59,frac{11}{20},frac{71}{129},frac{82}{149},color{#C00}{frac{891}{1619}},frac{127495}{231666},frac{383376}{696617},dotsright}
$$
As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac{891}{1619}$ is closer than $frac1{143cdot1619^2}$ to $frac{logleft(frac54right)}{logleft(frac32right)}$.
$endgroup$
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
14 mins ago
add a comment |
$begingroup$
The continued fraction for $frac{logleft(frac54right)}{logleft(frac32right)}$ is
$$
{0;1,1,4,2,6,1,color{#C00}{10},143,3,dots}
$$
The convergents for this continued fraction are
$$
left{0,1,frac12,frac59,frac{11}{20},frac{71}{129},frac{82}{149},color{#C00}{frac{891}{1619}},frac{127495}{231666},frac{383376}{696617},dotsright}
$$
As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac{891}{1619}$ is closer than $frac1{143cdot1619^2}$ to $frac{logleft(frac54right)}{logleft(frac32right)}$.
$endgroup$
The continued fraction for $frac{logleft(frac54right)}{logleft(frac32right)}$ is
$$
{0;1,1,4,2,6,1,color{#C00}{10},143,3,dots}
$$
The convergents for this continued fraction are
$$
left{0,1,frac12,frac59,frac{11}{20},frac{71}{129},frac{82}{149},color{#C00}{frac{891}{1619}},frac{127495}{231666},frac{383376}{696617},dotsright}
$$
As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac{891}{1619}$ is closer than $frac1{143cdot1619^2}$ to $frac{logleft(frac54right)}{logleft(frac32right)}$.
answered 26 mins ago
robjohn♦robjohn
269k27311638
269k27311638
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
14 mins ago
add a comment |
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
14 mins ago
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
14 mins ago
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
14 mins ago
add a comment |
$begingroup$
Running the extended Euclidean algorithm to find the continued fraction:
$$begin{array}{cc|cc}x&q&a&b\
hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^{-6} & 143 & 891 & -1619 \
1.25cdot 10^{-6} & 3 & -127495 & 231666end{array}$$
The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot frac{log(5/4)}{log(3/2)}approx 0.00679426$. The fraction $left|frac{log(5/4)}{log(3/2)}right|$ is approximated by $frac{|a_n|}{|b_n|}$, with increasing accuracy.
The formulas for building this table: $q_n = leftlfloor frac {x_{n-1}}{x_n}rightrfloor$, $x_{n+1}=x_{n-1}-q_nx_n$, $a_{n+1}=a_{n-1}-q_na_n$, $b_{n+1}=b_{n-1}-q_nb_n$. Initialize with $x_0=1$, $x_{-1}$ the quantity we're trying to estimate, $a_{-1}=b_0=0$, $a_0=b_{-1}=1$.
If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.
Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac{891}{1619}$ approximation.
It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac{11}{20}$ approximation.
$endgroup$
add a comment |
$begingroup$
Running the extended Euclidean algorithm to find the continued fraction:
$$begin{array}{cc|cc}x&q&a&b\
hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^{-6} & 143 & 891 & -1619 \
1.25cdot 10^{-6} & 3 & -127495 & 231666end{array}$$
The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot frac{log(5/4)}{log(3/2)}approx 0.00679426$. The fraction $left|frac{log(5/4)}{log(3/2)}right|$ is approximated by $frac{|a_n|}{|b_n|}$, with increasing accuracy.
The formulas for building this table: $q_n = leftlfloor frac {x_{n-1}}{x_n}rightrfloor$, $x_{n+1}=x_{n-1}-q_nx_n$, $a_{n+1}=a_{n-1}-q_na_n$, $b_{n+1}=b_{n-1}-q_nb_n$. Initialize with $x_0=1$, $x_{-1}$ the quantity we're trying to estimate, $a_{-1}=b_0=0$, $a_0=b_{-1}=1$.
If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.
Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac{891}{1619}$ approximation.
It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac{11}{20}$ approximation.
$endgroup$
add a comment |
$begingroup$
Running the extended Euclidean algorithm to find the continued fraction:
$$begin{array}{cc|cc}x&q&a&b\
hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^{-6} & 143 & 891 & -1619 \
1.25cdot 10^{-6} & 3 & -127495 & 231666end{array}$$
The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot frac{log(5/4)}{log(3/2)}approx 0.00679426$. The fraction $left|frac{log(5/4)}{log(3/2)}right|$ is approximated by $frac{|a_n|}{|b_n|}$, with increasing accuracy.
The formulas for building this table: $q_n = leftlfloor frac {x_{n-1}}{x_n}rightrfloor$, $x_{n+1}=x_{n-1}-q_nx_n$, $a_{n+1}=a_{n-1}-q_na_n$, $b_{n+1}=b_{n-1}-q_nb_n$. Initialize with $x_0=1$, $x_{-1}$ the quantity we're trying to estimate, $a_{-1}=b_0=0$, $a_0=b_{-1}=1$.
If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.
Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac{891}{1619}$ approximation.
It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac{11}{20}$ approximation.
$endgroup$
Running the extended Euclidean algorithm to find the continued fraction:
$$begin{array}{cc|cc}x&q&a&b\
hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^{-6} & 143 & 891 & -1619 \
1.25cdot 10^{-6} & 3 & -127495 & 231666end{array}$$
The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot frac{log(5/4)}{log(3/2)}approx 0.00679426$. The fraction $left|frac{log(5/4)}{log(3/2)}right|$ is approximated by $frac{|a_n|}{|b_n|}$, with increasing accuracy.
The formulas for building this table: $q_n = leftlfloor frac {x_{n-1}}{x_n}rightrfloor$, $x_{n+1}=x_{n-1}-q_nx_n$, $a_{n+1}=a_{n-1}-q_na_n$, $b_{n+1}=b_{n-1}-q_nb_n$. Initialize with $x_0=1$, $x_{-1}$ the quantity we're trying to estimate, $a_{-1}=b_0=0$, $a_0=b_{-1}=1$.
If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.
Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac{891}{1619}$ approximation.
It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac{11}{20}$ approximation.
answered 15 mins ago
jmerryjmerry
15.8k1632
15.8k1632
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160023%2fapproximating-irrational-number-to-rational-number%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac{55034}{100000}$ or $tfrac{5503}{10000}$. What's wrong with that?
$endgroup$
– amsmath
49 mins ago
1
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
47 mins ago
1
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
47 mins ago
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
45 mins ago
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
35 mins ago