Calculus II Question The Next CEO of Stack OverflowLength of an AstroidUnderstanding this...

Multiple labels for a single equation

If/When UK leaves the EU, can a future goverment conduct a referendum to join the EU?

How to start emacs in "nothing" mode (`fundamental-mode`)

Anatomically Correct Strange Women In Ponds Distributing Swords

How do we know the LHC results are robust?

Why does standard notation not preserve intervals (visually)

Can you replace a racial trait cantrip when leveling up?

How to Reset Passwords on Multiple Websites Easily?

Inappropriate reference requests from Journal reviewers

Can we say or write : "No, it'sn't"?

MessageLevel in QGIS3

If a black hole is created from light, can this black hole then move at speed of light?

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

How do scammers retract money, while you can’t?

How do I transpose the 1st and -1th levels of an arbitrarily nested array?

Limits on contract work without pre-agreed price/contract (UK)

Why does the UK parliament need a vote on the political declaration?

What flight has the highest ratio of time difference to flight time?

What benefits would be gained by using human laborers instead of drones in deep sea mining?

Why do we use the plural of movies in this phrase "We went to the movies last night."?

How to invert MapIndexed on a ragged structure? How to construct a tree from rules?

Sending manuscript to multiple publishers

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin

Interfacing a button to MCU (and PC) with 50m long cable



Calculus II Question



The Next CEO of Stack OverflowLength of an AstroidUnderstanding this calculus simplificationIntegration problem: $int x^{2} -x 4^{-x^{2}} dx$Finding the parametric form of a standard equationApplication of “twice the integral” even if the function is not graphically even?Find the length of the parametric curveFind the exact length of the parametric curve(Not sure what I'm doing wrong)Calculus 2 moments question.The length of a parametric curveParametric curve length - calculus












2












$begingroup$


Find the length of the following parametric curve.



$$x(t)=5+6t^4 ,quad y(t)=5+4t^6 ,qquad 0  ≤  t  ≤  2.$$



I used the formula
$$int_0^2sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
And I found
$$frac23cdot 17^{3/2}+4-frac23$$
However I got it wrong. I don't know where I went wrong. Any help would be apriciated.



My steps:
$$left(frac{dx}{dt}right) = 24cdot t^3 $$
$$left(frac{dy}{dt}right) = 24cdot t^5 $$
$$int_0^2sqrt{left(24cdot t^3right)^2+left(24cdot t^5right)^2}dt$$
$$int_0^2sqrt{left(576cdot t^6right)+left(576cdot t^10right)}dt$$
$$int_0^2sqrt{left(576cdot t^6right) cdot left(1+t^4right)}dt$$
$$24+int_0^2sqrt{left(t^6right) cdot left(1+t^4right)}dt$$



$$frac23cdot 17^{3/2}+4-frac23$$










share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 3




    $begingroup$
    What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
    $endgroup$
    – Ross Millikan
    1 hour ago








  • 1




    $begingroup$
    Isn't there a square root missing in your length formula?
    $endgroup$
    – John Wayland Bales
    1 hour ago






  • 1




    $begingroup$
    We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
    $endgroup$
    – David Peterson
    1 hour ago






  • 1




    $begingroup$
    @curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
    $endgroup$
    – John Omielan
    55 mins ago






  • 1




    $begingroup$
    @JohnOmielan that’s exactly what’s wrong
    $endgroup$
    – Shalop
    54 mins ago
















2












$begingroup$


Find the length of the following parametric curve.



$$x(t)=5+6t^4 ,quad y(t)=5+4t^6 ,qquad 0  ≤  t  ≤  2.$$



I used the formula
$$int_0^2sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
And I found
$$frac23cdot 17^{3/2}+4-frac23$$
However I got it wrong. I don't know where I went wrong. Any help would be apriciated.



My steps:
$$left(frac{dx}{dt}right) = 24cdot t^3 $$
$$left(frac{dy}{dt}right) = 24cdot t^5 $$
$$int_0^2sqrt{left(24cdot t^3right)^2+left(24cdot t^5right)^2}dt$$
$$int_0^2sqrt{left(576cdot t^6right)+left(576cdot t^10right)}dt$$
$$int_0^2sqrt{left(576cdot t^6right) cdot left(1+t^4right)}dt$$
$$24+int_0^2sqrt{left(t^6right) cdot left(1+t^4right)}dt$$



$$frac23cdot 17^{3/2}+4-frac23$$










share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 3




    $begingroup$
    What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
    $endgroup$
    – Ross Millikan
    1 hour ago








  • 1




    $begingroup$
    Isn't there a square root missing in your length formula?
    $endgroup$
    – John Wayland Bales
    1 hour ago






  • 1




    $begingroup$
    We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
    $endgroup$
    – David Peterson
    1 hour ago






  • 1




    $begingroup$
    @curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
    $endgroup$
    – John Omielan
    55 mins ago






  • 1




    $begingroup$
    @JohnOmielan that’s exactly what’s wrong
    $endgroup$
    – Shalop
    54 mins ago














2












2








2





$begingroup$


Find the length of the following parametric curve.



$$x(t)=5+6t^4 ,quad y(t)=5+4t^6 ,qquad 0  ≤  t  ≤  2.$$



I used the formula
$$int_0^2sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
And I found
$$frac23cdot 17^{3/2}+4-frac23$$
However I got it wrong. I don't know where I went wrong. Any help would be apriciated.



My steps:
$$left(frac{dx}{dt}right) = 24cdot t^3 $$
$$left(frac{dy}{dt}right) = 24cdot t^5 $$
$$int_0^2sqrt{left(24cdot t^3right)^2+left(24cdot t^5right)^2}dt$$
$$int_0^2sqrt{left(576cdot t^6right)+left(576cdot t^10right)}dt$$
$$int_0^2sqrt{left(576cdot t^6right) cdot left(1+t^4right)}dt$$
$$24+int_0^2sqrt{left(t^6right) cdot left(1+t^4right)}dt$$



$$frac23cdot 17^{3/2}+4-frac23$$










share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Find the length of the following parametric curve.



$$x(t)=5+6t^4 ,quad y(t)=5+4t^6 ,qquad 0  ≤  t  ≤  2.$$



I used the formula
$$int_0^2sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
And I found
$$frac23cdot 17^{3/2}+4-frac23$$
However I got it wrong. I don't know where I went wrong. Any help would be apriciated.



My steps:
$$left(frac{dx}{dt}right) = 24cdot t^3 $$
$$left(frac{dy}{dt}right) = 24cdot t^5 $$
$$int_0^2sqrt{left(24cdot t^3right)^2+left(24cdot t^5right)^2}dt$$
$$int_0^2sqrt{left(576cdot t^6right)+left(576cdot t^10right)}dt$$
$$int_0^2sqrt{left(576cdot t^6right) cdot left(1+t^4right)}dt$$
$$24+int_0^2sqrt{left(t^6right) cdot left(1+t^4right)}dt$$



$$frac23cdot 17^{3/2}+4-frac23$$







calculus integration






share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 50 mins ago









rash

585116




585116






New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 1 hour ago









curiousengcuriouseng

134




134




New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 3




    $begingroup$
    What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
    $endgroup$
    – Ross Millikan
    1 hour ago








  • 1




    $begingroup$
    Isn't there a square root missing in your length formula?
    $endgroup$
    – John Wayland Bales
    1 hour ago






  • 1




    $begingroup$
    We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
    $endgroup$
    – David Peterson
    1 hour ago






  • 1




    $begingroup$
    @curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
    $endgroup$
    – John Omielan
    55 mins ago






  • 1




    $begingroup$
    @JohnOmielan that’s exactly what’s wrong
    $endgroup$
    – Shalop
    54 mins ago














  • 3




    $begingroup$
    What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
    $endgroup$
    – Ross Millikan
    1 hour ago








  • 1




    $begingroup$
    Isn't there a square root missing in your length formula?
    $endgroup$
    – John Wayland Bales
    1 hour ago






  • 1




    $begingroup$
    We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
    $endgroup$
    – David Peterson
    1 hour ago






  • 1




    $begingroup$
    @curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
    $endgroup$
    – John Omielan
    55 mins ago






  • 1




    $begingroup$
    @JohnOmielan that’s exactly what’s wrong
    $endgroup$
    – Shalop
    54 mins ago








3




3




$begingroup$
What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
$endgroup$
– Ross Millikan
1 hour ago






$begingroup$
What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
$endgroup$
– Ross Millikan
1 hour ago






1




1




$begingroup$
Isn't there a square root missing in your length formula?
$endgroup$
– John Wayland Bales
1 hour ago




$begingroup$
Isn't there a square root missing in your length formula?
$endgroup$
– John Wayland Bales
1 hour ago




1




1




$begingroup$
We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
$endgroup$
– David Peterson
1 hour ago




$begingroup$
We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
$endgroup$
– David Peterson
1 hour ago




1




1




$begingroup$
@curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
$endgroup$
– John Omielan
55 mins ago




$begingroup$
@curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
$endgroup$
– John Omielan
55 mins ago




1




1




$begingroup$
@JohnOmielan that’s exactly what’s wrong
$endgroup$
– Shalop
54 mins ago




$begingroup$
@JohnOmielan that’s exactly what’s wrong
$endgroup$
– Shalop
54 mins ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



Which gives us:



$$int_0^2 24sqrt{t^6+t^{10}}dt$$



Which, when integrated, gives us: $$68sqrt{17}-4$$



I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
    $endgroup$
    – curiouseng
    57 mins ago










  • $begingroup$
    @curiouseng You are very welcome, regards!
    $endgroup$
    – Bertrand Wittgenstein's Ghost
    57 mins ago



















2












$begingroup$

Line 4 should read $$int_{t=0}^2 sqrt{576 t^6 + 576 t^{10}} , dt.$$ This is a typesetting error.



Line 5 is correct.



Line 6 should read $$24 int_{t=0}^2 sqrt{t^6 (1+t^4)} , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
$$begin{align*}
24 int_{t=0}^2 sqrt{t^6(1+t^4)} , dt
&= 24 int_{t=0}^2 t^3 sqrt{1+t^4} , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
&= 6 int_{u=1}^{17} sqrt{u} , du \
&= 6 left[frac{2u^{3/2}}{3} right]_{u=0}^{17} \
&= 4 (17^{3/2} - 1) \
&= 68 sqrt{17} - 4.
end{align*}$$






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });






    curiouseng is a new contributor. Be nice, and check out our Code of Conduct.










    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167826%2fcalculus-ii-question%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



    Which gives us:



    $$int_0^2 24sqrt{t^6+t^{10}}dt$$



    Which, when integrated, gives us: $$68sqrt{17}-4$$



    I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
      $endgroup$
      – curiouseng
      57 mins ago










    • $begingroup$
      @curiouseng You are very welcome, regards!
      $endgroup$
      – Bertrand Wittgenstein's Ghost
      57 mins ago
















    2












    $begingroup$

    Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



    Which gives us:



    $$int_0^2 24sqrt{t^6+t^{10}}dt$$



    Which, when integrated, gives us: $$68sqrt{17}-4$$



    I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
      $endgroup$
      – curiouseng
      57 mins ago










    • $begingroup$
      @curiouseng You are very welcome, regards!
      $endgroup$
      – Bertrand Wittgenstein's Ghost
      57 mins ago














    2












    2








    2





    $begingroup$

    Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



    Which gives us:



    $$int_0^2 24sqrt{t^6+t^{10}}dt$$



    Which, when integrated, gives us: $$68sqrt{17}-4$$



    I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.






    share|cite|improve this answer









    $endgroup$



    Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



    Which gives us:



    $$int_0^2 24sqrt{t^6+t^{10}}dt$$



    Which, when integrated, gives us: $$68sqrt{17}-4$$



    I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 1 hour ago









    Bertrand Wittgenstein's GhostBertrand Wittgenstein's Ghost

    527217




    527217












    • $begingroup$
      Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
      $endgroup$
      – curiouseng
      57 mins ago










    • $begingroup$
      @curiouseng You are very welcome, regards!
      $endgroup$
      – Bertrand Wittgenstein's Ghost
      57 mins ago


















    • $begingroup$
      Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
      $endgroup$
      – curiouseng
      57 mins ago










    • $begingroup$
      @curiouseng You are very welcome, regards!
      $endgroup$
      – Bertrand Wittgenstein's Ghost
      57 mins ago
















    $begingroup$
    Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
    $endgroup$
    – curiouseng
    57 mins ago




    $begingroup$
    Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
    $endgroup$
    – curiouseng
    57 mins ago












    $begingroup$
    @curiouseng You are very welcome, regards!
    $endgroup$
    – Bertrand Wittgenstein's Ghost
    57 mins ago




    $begingroup$
    @curiouseng You are very welcome, regards!
    $endgroup$
    – Bertrand Wittgenstein's Ghost
    57 mins ago











    2












    $begingroup$

    Line 4 should read $$int_{t=0}^2 sqrt{576 t^6 + 576 t^{10}} , dt.$$ This is a typesetting error.



    Line 5 is correct.



    Line 6 should read $$24 int_{t=0}^2 sqrt{t^6 (1+t^4)} , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



    You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
    $$begin{align*}
    24 int_{t=0}^2 sqrt{t^6(1+t^4)} , dt
    &= 24 int_{t=0}^2 t^3 sqrt{1+t^4} , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
    &= 6 int_{u=1}^{17} sqrt{u} , du \
    &= 6 left[frac{2u^{3/2}}{3} right]_{u=0}^{17} \
    &= 4 (17^{3/2} - 1) \
    &= 68 sqrt{17} - 4.
    end{align*}$$






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Line 4 should read $$int_{t=0}^2 sqrt{576 t^6 + 576 t^{10}} , dt.$$ This is a typesetting error.



      Line 5 is correct.



      Line 6 should read $$24 int_{t=0}^2 sqrt{t^6 (1+t^4)} , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



      You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
      $$begin{align*}
      24 int_{t=0}^2 sqrt{t^6(1+t^4)} , dt
      &= 24 int_{t=0}^2 t^3 sqrt{1+t^4} , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
      &= 6 int_{u=1}^{17} sqrt{u} , du \
      &= 6 left[frac{2u^{3/2}}{3} right]_{u=0}^{17} \
      &= 4 (17^{3/2} - 1) \
      &= 68 sqrt{17} - 4.
      end{align*}$$






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Line 4 should read $$int_{t=0}^2 sqrt{576 t^6 + 576 t^{10}} , dt.$$ This is a typesetting error.



        Line 5 is correct.



        Line 6 should read $$24 int_{t=0}^2 sqrt{t^6 (1+t^4)} , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



        You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
        $$begin{align*}
        24 int_{t=0}^2 sqrt{t^6(1+t^4)} , dt
        &= 24 int_{t=0}^2 t^3 sqrt{1+t^4} , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
        &= 6 int_{u=1}^{17} sqrt{u} , du \
        &= 6 left[frac{2u^{3/2}}{3} right]_{u=0}^{17} \
        &= 4 (17^{3/2} - 1) \
        &= 68 sqrt{17} - 4.
        end{align*}$$






        share|cite|improve this answer









        $endgroup$



        Line 4 should read $$int_{t=0}^2 sqrt{576 t^6 + 576 t^{10}} , dt.$$ This is a typesetting error.



        Line 5 is correct.



        Line 6 should read $$24 int_{t=0}^2 sqrt{t^6 (1+t^4)} , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



        You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
        $$begin{align*}
        24 int_{t=0}^2 sqrt{t^6(1+t^4)} , dt
        &= 24 int_{t=0}^2 t^3 sqrt{1+t^4} , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
        &= 6 int_{u=1}^{17} sqrt{u} , du \
        &= 6 left[frac{2u^{3/2}}{3} right]_{u=0}^{17} \
        &= 4 (17^{3/2} - 1) \
        &= 68 sqrt{17} - 4.
        end{align*}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 29 mins ago









        heropupheropup

        64.8k764103




        64.8k764103






















            curiouseng is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            curiouseng is a new contributor. Be nice, and check out our Code of Conduct.













            curiouseng is a new contributor. Be nice, and check out our Code of Conduct.












            curiouseng is a new contributor. Be nice, and check out our Code of Conduct.
















            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167826%2fcalculus-ii-question%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Anexo:Material bélico de la Fuerza Aérea de Chile Índice Aeronaves Defensa...

            Always On Availability groups resolving state after failover - Remote harden of transaction...

            update json value to null Announcing the arrival of Valued Associate #679: Cesar Manara ...