Distribution of Maximum Likelihood EstimatorMaximum likelihood of function of the mean on a restricted...
Ban on all campaign finance?
Is it true that real estate prices mainly go up?
Why did it take so long to abandon sail after steamships were demonstrated?
Why does Deadpool say "You're welcome, Canada," after shooting Ryan Reynolds in the end credits?
How to write cleanly even if my character uses expletive language?
Identifying the interval from A♭ to D♯
Why doesn't using two cd commands in bash script execute the second command?
Is a lawful good "antagonist" effective?
Happy pi day, everyone!
What options are left, if Britain cannot decide?
Make a transparent 448*448 image
Who is our nearest planetary neighbor, on average?
Official degrees of earth’s rotation per day
At what level can a dragon innately cast its spells?
Brexit - No Deal Rejection
Be in awe of my brilliance!
How do I hide Chekhov's Gun?
How to deal with taxi scam when on vacation?
Is having access to past exams cheating and, if yes, could it be proven just by a good grade?
Does splitting a potentially monolithic application into several smaller ones help prevent bugs?
How to make healing in an exploration game interesting
I need to drive a 7/16" nut but am unsure how to use the socket I bought for my screwdriver
Does this property of comaximal ideals always holds?
Will a pinhole camera work with instant film?
Distribution of Maximum Likelihood Estimator
Maximum likelihood of function of the mean on a restricted parameter spaceMaximum Likelihood Estimator (MLE)Maximum Likelihood Estimator of the exponential function parameter based on Order StatisticsFind maximum likelihood estimateMaximum Likelihood Estimation in case of some specific uniform distributionsMaximum likelihood estimate for a univariate gaussianFind the Maximum Likelihood Estimator given two pdfsMaximum Likelihood Estimate for a likelihood defined by partsVariance of distribution for maximum likelihood estimatorHow is $P(D;theta) = P(D|theta)$?
$begingroup$
Why is the Maximum Likelihood Estimator Normally distributed? I can't figure out why it is true for large n in general. My attempt (for single parameter)
Let $L(theta)$ be the maximum likelihood function for the distribution $f(x;theta)$
Then after taking sample of size n
$$L(theta)=f(x_1;theta)cdot f(x_2theta)...f(x_n;theta)$$
And we want to find $theta_{max}$ such that $L(theta)$ is maximized and $theta_{max}$ is our estimate (once a sample has actually been selected)
Since $theta_{max}$ maximizes $L(theta)$ it also maximizes $ln(L(theta))$
where
$$ln(L(theta))=ln(f(x_1;theta))+ln(f(x_2;theta))...+ln(f(x_n;theta))$$
Taking the derivative with respect to $theta$
$$frac{f'(x_1;theta)}{f(x_1;theta)}+frac{f'(x_2;theta)}{f(x_2;theta)}...+frac{f'(x_n;theta)}{f(x_n;theta)}$$
$theta_{max}$ would be the solution of the above when set to 0 (after selecting values for all $x_1,x_2...x_n$) but why is it normally distributed and how do I show that it's true for large n?
probability distributions normal-distribution estimation sampling
New contributor
$endgroup$
add a comment |
$begingroup$
Why is the Maximum Likelihood Estimator Normally distributed? I can't figure out why it is true for large n in general. My attempt (for single parameter)
Let $L(theta)$ be the maximum likelihood function for the distribution $f(x;theta)$
Then after taking sample of size n
$$L(theta)=f(x_1;theta)cdot f(x_2theta)...f(x_n;theta)$$
And we want to find $theta_{max}$ such that $L(theta)$ is maximized and $theta_{max}$ is our estimate (once a sample has actually been selected)
Since $theta_{max}$ maximizes $L(theta)$ it also maximizes $ln(L(theta))$
where
$$ln(L(theta))=ln(f(x_1;theta))+ln(f(x_2;theta))...+ln(f(x_n;theta))$$
Taking the derivative with respect to $theta$
$$frac{f'(x_1;theta)}{f(x_1;theta)}+frac{f'(x_2;theta)}{f(x_2;theta)}...+frac{f'(x_n;theta)}{f(x_n;theta)}$$
$theta_{max}$ would be the solution of the above when set to 0 (after selecting values for all $x_1,x_2...x_n$) but why is it normally distributed and how do I show that it's true for large n?
probability distributions normal-distribution estimation sampling
New contributor
$endgroup$
add a comment |
$begingroup$
Why is the Maximum Likelihood Estimator Normally distributed? I can't figure out why it is true for large n in general. My attempt (for single parameter)
Let $L(theta)$ be the maximum likelihood function for the distribution $f(x;theta)$
Then after taking sample of size n
$$L(theta)=f(x_1;theta)cdot f(x_2theta)...f(x_n;theta)$$
And we want to find $theta_{max}$ such that $L(theta)$ is maximized and $theta_{max}$ is our estimate (once a sample has actually been selected)
Since $theta_{max}$ maximizes $L(theta)$ it also maximizes $ln(L(theta))$
where
$$ln(L(theta))=ln(f(x_1;theta))+ln(f(x_2;theta))...+ln(f(x_n;theta))$$
Taking the derivative with respect to $theta$
$$frac{f'(x_1;theta)}{f(x_1;theta)}+frac{f'(x_2;theta)}{f(x_2;theta)}...+frac{f'(x_n;theta)}{f(x_n;theta)}$$
$theta_{max}$ would be the solution of the above when set to 0 (after selecting values for all $x_1,x_2...x_n$) but why is it normally distributed and how do I show that it's true for large n?
probability distributions normal-distribution estimation sampling
New contributor
$endgroup$
Why is the Maximum Likelihood Estimator Normally distributed? I can't figure out why it is true for large n in general. My attempt (for single parameter)
Let $L(theta)$ be the maximum likelihood function for the distribution $f(x;theta)$
Then after taking sample of size n
$$L(theta)=f(x_1;theta)cdot f(x_2theta)...f(x_n;theta)$$
And we want to find $theta_{max}$ such that $L(theta)$ is maximized and $theta_{max}$ is our estimate (once a sample has actually been selected)
Since $theta_{max}$ maximizes $L(theta)$ it also maximizes $ln(L(theta))$
where
$$ln(L(theta))=ln(f(x_1;theta))+ln(f(x_2;theta))...+ln(f(x_n;theta))$$
Taking the derivative with respect to $theta$
$$frac{f'(x_1;theta)}{f(x_1;theta)}+frac{f'(x_2;theta)}{f(x_2;theta)}...+frac{f'(x_n;theta)}{f(x_n;theta)}$$
$theta_{max}$ would be the solution of the above when set to 0 (after selecting values for all $x_1,x_2...x_n$) but why is it normally distributed and how do I show that it's true for large n?
probability distributions normal-distribution estimation sampling
probability distributions normal-distribution estimation sampling
New contributor
New contributor
New contributor
asked 4 hours ago
Colin HicksColin Hicks
1353
1353
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
MLE requires $$frac{partial ln L(theta)}{partial theta} = sum_{i=1}^n frac{ f'(x_i;theta)}{f(x_i;theta)},$$
where $f'(x_i;theta)$ could denote a gradient (allowing for the multivariate case, but still sticking to your notation). Define a new function $g(x;theta)=frac{ f'(x;theta)}{f(x;theta)}.$ Then ${g(x_i;theta)}_{i=1}^n$ is a new iid sequence of random variables, with $Eg(x_1;theta)=0$. If $Eg(x_1;theta)g(x_1;theta)'<infty$, CLT implies,
$$sqrt{n}(bar{g}_n(theta)-Eg(x_1;theta))=sqrt{n}bar{g}_n(theta) rightarrow_D N(0,E(g(x;theta)g(x;theta)'),$$
where $bar{g}_n(theta)=frac{1}{n} sum_{i=1}^n g(x_i;theta).$ The ML estimator solves the equation
$$bar{g}_n(theta)=0.$$
It follows that the ML estimator is given by
$$hat{theta}=bar{g}_n^{-1}(0).$$
So long as the set of discontinuity points of $bar{g}_n^{-1}(z)$, i.e. the set of all values of $z$ such that $bar{g}_n^{-1}(z)$ is not continuous, occur with probability zero, the continuous mapping theorem gives us asymptotic normality of $theta$.
New contributor
$endgroup$
$begingroup$
$frac{f'(x)}{f(x)}$ is just another function of x so central limit theorem applies thank you for that
$endgroup$
– Colin Hicks
3 hours ago
$begingroup$
You're welcome :)
$endgroup$
– dlnB
3 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "65"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Colin Hicks is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f397619%2fdistribution-of-maximum-likelihood-estimator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
MLE requires $$frac{partial ln L(theta)}{partial theta} = sum_{i=1}^n frac{ f'(x_i;theta)}{f(x_i;theta)},$$
where $f'(x_i;theta)$ could denote a gradient (allowing for the multivariate case, but still sticking to your notation). Define a new function $g(x;theta)=frac{ f'(x;theta)}{f(x;theta)}.$ Then ${g(x_i;theta)}_{i=1}^n$ is a new iid sequence of random variables, with $Eg(x_1;theta)=0$. If $Eg(x_1;theta)g(x_1;theta)'<infty$, CLT implies,
$$sqrt{n}(bar{g}_n(theta)-Eg(x_1;theta))=sqrt{n}bar{g}_n(theta) rightarrow_D N(0,E(g(x;theta)g(x;theta)'),$$
where $bar{g}_n(theta)=frac{1}{n} sum_{i=1}^n g(x_i;theta).$ The ML estimator solves the equation
$$bar{g}_n(theta)=0.$$
It follows that the ML estimator is given by
$$hat{theta}=bar{g}_n^{-1}(0).$$
So long as the set of discontinuity points of $bar{g}_n^{-1}(z)$, i.e. the set of all values of $z$ such that $bar{g}_n^{-1}(z)$ is not continuous, occur with probability zero, the continuous mapping theorem gives us asymptotic normality of $theta$.
New contributor
$endgroup$
$begingroup$
$frac{f'(x)}{f(x)}$ is just another function of x so central limit theorem applies thank you for that
$endgroup$
– Colin Hicks
3 hours ago
$begingroup$
You're welcome :)
$endgroup$
– dlnB
3 hours ago
add a comment |
$begingroup$
MLE requires $$frac{partial ln L(theta)}{partial theta} = sum_{i=1}^n frac{ f'(x_i;theta)}{f(x_i;theta)},$$
where $f'(x_i;theta)$ could denote a gradient (allowing for the multivariate case, but still sticking to your notation). Define a new function $g(x;theta)=frac{ f'(x;theta)}{f(x;theta)}.$ Then ${g(x_i;theta)}_{i=1}^n$ is a new iid sequence of random variables, with $Eg(x_1;theta)=0$. If $Eg(x_1;theta)g(x_1;theta)'<infty$, CLT implies,
$$sqrt{n}(bar{g}_n(theta)-Eg(x_1;theta))=sqrt{n}bar{g}_n(theta) rightarrow_D N(0,E(g(x;theta)g(x;theta)'),$$
where $bar{g}_n(theta)=frac{1}{n} sum_{i=1}^n g(x_i;theta).$ The ML estimator solves the equation
$$bar{g}_n(theta)=0.$$
It follows that the ML estimator is given by
$$hat{theta}=bar{g}_n^{-1}(0).$$
So long as the set of discontinuity points of $bar{g}_n^{-1}(z)$, i.e. the set of all values of $z$ such that $bar{g}_n^{-1}(z)$ is not continuous, occur with probability zero, the continuous mapping theorem gives us asymptotic normality of $theta$.
New contributor
$endgroup$
$begingroup$
$frac{f'(x)}{f(x)}$ is just another function of x so central limit theorem applies thank you for that
$endgroup$
– Colin Hicks
3 hours ago
$begingroup$
You're welcome :)
$endgroup$
– dlnB
3 hours ago
add a comment |
$begingroup$
MLE requires $$frac{partial ln L(theta)}{partial theta} = sum_{i=1}^n frac{ f'(x_i;theta)}{f(x_i;theta)},$$
where $f'(x_i;theta)$ could denote a gradient (allowing for the multivariate case, but still sticking to your notation). Define a new function $g(x;theta)=frac{ f'(x;theta)}{f(x;theta)}.$ Then ${g(x_i;theta)}_{i=1}^n$ is a new iid sequence of random variables, with $Eg(x_1;theta)=0$. If $Eg(x_1;theta)g(x_1;theta)'<infty$, CLT implies,
$$sqrt{n}(bar{g}_n(theta)-Eg(x_1;theta))=sqrt{n}bar{g}_n(theta) rightarrow_D N(0,E(g(x;theta)g(x;theta)'),$$
where $bar{g}_n(theta)=frac{1}{n} sum_{i=1}^n g(x_i;theta).$ The ML estimator solves the equation
$$bar{g}_n(theta)=0.$$
It follows that the ML estimator is given by
$$hat{theta}=bar{g}_n^{-1}(0).$$
So long as the set of discontinuity points of $bar{g}_n^{-1}(z)$, i.e. the set of all values of $z$ such that $bar{g}_n^{-1}(z)$ is not continuous, occur with probability zero, the continuous mapping theorem gives us asymptotic normality of $theta$.
New contributor
$endgroup$
MLE requires $$frac{partial ln L(theta)}{partial theta} = sum_{i=1}^n frac{ f'(x_i;theta)}{f(x_i;theta)},$$
where $f'(x_i;theta)$ could denote a gradient (allowing for the multivariate case, but still sticking to your notation). Define a new function $g(x;theta)=frac{ f'(x;theta)}{f(x;theta)}.$ Then ${g(x_i;theta)}_{i=1}^n$ is a new iid sequence of random variables, with $Eg(x_1;theta)=0$. If $Eg(x_1;theta)g(x_1;theta)'<infty$, CLT implies,
$$sqrt{n}(bar{g}_n(theta)-Eg(x_1;theta))=sqrt{n}bar{g}_n(theta) rightarrow_D N(0,E(g(x;theta)g(x;theta)'),$$
where $bar{g}_n(theta)=frac{1}{n} sum_{i=1}^n g(x_i;theta).$ The ML estimator solves the equation
$$bar{g}_n(theta)=0.$$
It follows that the ML estimator is given by
$$hat{theta}=bar{g}_n^{-1}(0).$$
So long as the set of discontinuity points of $bar{g}_n^{-1}(z)$, i.e. the set of all values of $z$ such that $bar{g}_n^{-1}(z)$ is not continuous, occur with probability zero, the continuous mapping theorem gives us asymptotic normality of $theta$.
New contributor
edited 2 hours ago
New contributor
answered 3 hours ago
dlnBdlnB
3917
3917
New contributor
New contributor
$begingroup$
$frac{f'(x)}{f(x)}$ is just another function of x so central limit theorem applies thank you for that
$endgroup$
– Colin Hicks
3 hours ago
$begingroup$
You're welcome :)
$endgroup$
– dlnB
3 hours ago
add a comment |
$begingroup$
$frac{f'(x)}{f(x)}$ is just another function of x so central limit theorem applies thank you for that
$endgroup$
– Colin Hicks
3 hours ago
$begingroup$
You're welcome :)
$endgroup$
– dlnB
3 hours ago
$begingroup$
$frac{f'(x)}{f(x)}$ is just another function of x so central limit theorem applies thank you for that
$endgroup$
– Colin Hicks
3 hours ago
$begingroup$
$frac{f'(x)}{f(x)}$ is just another function of x so central limit theorem applies thank you for that
$endgroup$
– Colin Hicks
3 hours ago
$begingroup$
You're welcome :)
$endgroup$
– dlnB
3 hours ago
$begingroup$
You're welcome :)
$endgroup$
– dlnB
3 hours ago
add a comment |
Colin Hicks is a new contributor. Be nice, and check out our Code of Conduct.
Colin Hicks is a new contributor. Be nice, and check out our Code of Conduct.
Colin Hicks is a new contributor. Be nice, and check out our Code of Conduct.
Colin Hicks is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Cross Validated!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f397619%2fdistribution-of-maximum-likelihood-estimator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown