Does this property of comaximal ideals always holds?Question on Comaximal IdealsUnital commutative ring and...
Have researchers managed to "reverse time"? If so, what does that mean for physics?
What is this large pipe coming out of my roof?
How could a female member of a species produce eggs unto death?
How can I change step-down my variable input voltage? [Microcontroller]
An Accountant Seeks the Help of a Mathematician
Life insurance that covers only simultaneous/dual deaths
Dot in front of file
How to simplify this time periods definition interface?
What are some nice/clever ways to introduce the tonic's dominant seventh chord?
PTIJ: Who should pay for Uber rides: the child or the parent?
I need to drive a 7/16" nut but am unsure how to use the socket I bought for my screwdriver
My adviser wants to be the first author
Why do passenger jet manufacturers design their planes with stall prevention systems?
Welcoming 2019 Pi day: How to draw the letter π?
Official degrees of earth’s rotation per day
How to generate globally unique ids for different tables of the same database?
Ban on all campaign finance?
Can elves maintain concentration in a trance?
Know when to turn notes upside-down(eighth notes, sixteen notes, etc.)
Be in awe of my brilliance!
Should we release the security issues we found in our product as CVE or we can just update those on weekly release notes?
Distribution of Maximum Likelihood Estimator
Why doesn't the EU now just force the UK to choose between referendum and no-deal?
How do I interpret this "sky cover" chart?
Does this property of comaximal ideals always holds?
Question on Comaximal IdealsUnital commutative ring and distinct maximal ideals.Where does the proof for commutative rings break down in the non-commutative ring when showing only two ideals implies the ring is a field?Direct-Sum Decomposition of an Artinian moduleProve that $m_1m_2ldots m_r=n_1n_2ldots n_s$ implies $r=s$ for distinct maximal idealsQuestion about maximal ideals in a commutative Artinian ringA property of associated prime idealsThe meaning of idempotents corresponding the standard basis in direct product of fieldsAre non-coprime ideals always contained in some prime ideal?Product of ideals equals intersection but they are not comaximal
$begingroup$
I am reading a paper in which the following result is used but I can’t see the proof of this.
let $R$ be a commutative ring with only two maximal ideals say $M_1$ and $M_2$. Suppose $m_1 in M_1$ be such that $m_1 notin M_2$ then can be always find $m_2 in M_2$ such that $m_1+m_2=1$
Any ideas?
abstract-algebra ring-theory commutative-algebra maximal-and-prime-ideals
$endgroup$
add a comment |
$begingroup$
I am reading a paper in which the following result is used but I can’t see the proof of this.
let $R$ be a commutative ring with only two maximal ideals say $M_1$ and $M_2$. Suppose $m_1 in M_1$ be such that $m_1 notin M_2$ then can be always find $m_2 in M_2$ such that $m_1+m_2=1$
Any ideas?
abstract-algebra ring-theory commutative-algebra maximal-and-prime-ideals
$endgroup$
$begingroup$
Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
$endgroup$
– B.Swan
2 hours ago
$begingroup$
@B.Swan this approach doesn't work, to see why try writing out the details
$endgroup$
– Alex Mathers
2 hours ago
1
$begingroup$
Set $I=(M_2 cup {m_1}) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
$endgroup$
– B.Swan
2 hours ago
add a comment |
$begingroup$
I am reading a paper in which the following result is used but I can’t see the proof of this.
let $R$ be a commutative ring with only two maximal ideals say $M_1$ and $M_2$. Suppose $m_1 in M_1$ be such that $m_1 notin M_2$ then can be always find $m_2 in M_2$ such that $m_1+m_2=1$
Any ideas?
abstract-algebra ring-theory commutative-algebra maximal-and-prime-ideals
$endgroup$
I am reading a paper in which the following result is used but I can’t see the proof of this.
let $R$ be a commutative ring with only two maximal ideals say $M_1$ and $M_2$. Suppose $m_1 in M_1$ be such that $m_1 notin M_2$ then can be always find $m_2 in M_2$ such that $m_1+m_2=1$
Any ideas?
abstract-algebra ring-theory commutative-algebra maximal-and-prime-ideals
abstract-algebra ring-theory commutative-algebra maximal-and-prime-ideals
asked 2 hours ago
Math LoverMath Lover
1,029315
1,029315
$begingroup$
Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
$endgroup$
– B.Swan
2 hours ago
$begingroup$
@B.Swan this approach doesn't work, to see why try writing out the details
$endgroup$
– Alex Mathers
2 hours ago
1
$begingroup$
Set $I=(M_2 cup {m_1}) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
$endgroup$
– B.Swan
2 hours ago
add a comment |
$begingroup$
Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
$endgroup$
– B.Swan
2 hours ago
$begingroup$
@B.Swan this approach doesn't work, to see why try writing out the details
$endgroup$
– Alex Mathers
2 hours ago
1
$begingroup$
Set $I=(M_2 cup {m_1}) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
$endgroup$
– B.Swan
2 hours ago
$begingroup$
Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
$endgroup$
– B.Swan
2 hours ago
$begingroup$
Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
$endgroup$
– B.Swan
2 hours ago
$begingroup$
@B.Swan this approach doesn't work, to see why try writing out the details
$endgroup$
– Alex Mathers
2 hours ago
$begingroup$
@B.Swan this approach doesn't work, to see why try writing out the details
$endgroup$
– Alex Mathers
2 hours ago
1
1
$begingroup$
Set $I=(M_2 cup {m_1}) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
$endgroup$
– B.Swan
2 hours ago
$begingroup$
Set $I=(M_2 cup {m_1}) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
$endgroup$
– B.Swan
2 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.
Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.
Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.
$endgroup$
add a comment |
$begingroup$
Take $R=mathbb{Q}timesmathbb{Q}$, $M_1=mathbb{Q}times{0}$, $M_2={0}timesmathbb{Q}$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbb{Q}timesmathbb{Q}$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$
Therefore, that property is not satisfied in general.
Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$. This other property is immediate by using the maximality of $M_1$ and $M_2$, which implies that $M_1+M_2=R$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148803%2fdoes-this-property-of-comaximal-ideals-always-holds%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.
Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.
Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.
$endgroup$
add a comment |
$begingroup$
First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.
Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.
Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.
$endgroup$
add a comment |
$begingroup$
First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.
Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.
Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.
$endgroup$
First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.
Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.
Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.
edited 2 hours ago
answered 2 hours ago
Alex MathersAlex Mathers
11.1k21344
11.1k21344
add a comment |
add a comment |
$begingroup$
Take $R=mathbb{Q}timesmathbb{Q}$, $M_1=mathbb{Q}times{0}$, $M_2={0}timesmathbb{Q}$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbb{Q}timesmathbb{Q}$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$
Therefore, that property is not satisfied in general.
Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$. This other property is immediate by using the maximality of $M_1$ and $M_2$, which implies that $M_1+M_2=R$.
$endgroup$
add a comment |
$begingroup$
Take $R=mathbb{Q}timesmathbb{Q}$, $M_1=mathbb{Q}times{0}$, $M_2={0}timesmathbb{Q}$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbb{Q}timesmathbb{Q}$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$
Therefore, that property is not satisfied in general.
Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$. This other property is immediate by using the maximality of $M_1$ and $M_2$, which implies that $M_1+M_2=R$.
$endgroup$
add a comment |
$begingroup$
Take $R=mathbb{Q}timesmathbb{Q}$, $M_1=mathbb{Q}times{0}$, $M_2={0}timesmathbb{Q}$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbb{Q}timesmathbb{Q}$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$
Therefore, that property is not satisfied in general.
Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$. This other property is immediate by using the maximality of $M_1$ and $M_2$, which implies that $M_1+M_2=R$.
$endgroup$
Take $R=mathbb{Q}timesmathbb{Q}$, $M_1=mathbb{Q}times{0}$, $M_2={0}timesmathbb{Q}$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbb{Q}timesmathbb{Q}$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$
Therefore, that property is not satisfied in general.
Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$. This other property is immediate by using the maximality of $M_1$ and $M_2$, which implies that $M_1+M_2=R$.
edited 38 mins ago
answered 1 hour ago
user647486user647486
613
613
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148803%2fdoes-this-property-of-comaximal-ideals-always-holds%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
$endgroup$
– B.Swan
2 hours ago
$begingroup$
@B.Swan this approach doesn't work, to see why try writing out the details
$endgroup$
– Alex Mathers
2 hours ago
1
$begingroup$
Set $I=(M_2 cup {m_1}) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
$endgroup$
– B.Swan
2 hours ago