Extension of Splitting Fields over An Arbitrary FieldSplitting field implies Galois extensionWhat does it...
Can you reject a postdoc offer after the PI has paid a large sum for flights/accommodation for your visit?
Making a sword in the stone, in a medieval world without magic
Life insurance that covers only simultaneous/dual deaths
Is it illegal in Germany to take sick leave if you caused your own illness with food?
Extension of Splitting Fields over An Arbitrary Field
Who is our nearest neighbor
Why do Australian milk farmers need to protest supermarkets' milk price?
What is the likely impact on flights of grounding an entire aircraft series?
Humans have energy, but not water. What happens?
Force user to remove USB token
Co-worker team leader wants to inject the crap software product of his friends into our development. What should I say to our common boss?
Deleting missing values from a dataset
When two POV characters meet
Does Linux have system calls to access all the features of the file systems it supports?
What has been your most complicated TikZ drawing?
"One can do his homework in the library"
"However" used in a conditional clause?
Best mythical creature to use as livestock?
What is the definition of "Natural Selection"?
Potentiometer like component
Prove that the total distance is minimised (when travelling across the longest path)
Replacing Windows 7 security updates with anti-virus?
Can "semicircle" be used to refer to a part-circle that is not a exact half-circle?
Does splitting a potentially monolithic application into several smaller ones help prevent bugs?
Extension of Splitting Fields over An Arbitrary Field
Splitting field implies Galois extensionWhat does it mean to take the splitting field of $f(x)in F[x]$ over $K$ where $K/F$ is a field extensionCalculating Splitting Field Degree of ExtensionDetermining whether or not an extension is a splitting fieldElementary Field Theory: Extension Field of Degree 2Splitting field of $x^3 - 2$ over $mathbb{F}_5$Normal field extension implies splitting fieldSplitting fields and their degreesWhat things we have to take care of while finding the degree of field extension, splitting fields for some polynomial?A question on the definition of splitting field
$begingroup$
Let $F$ be a field in which $0 neq2$ in $F$, and consider $f=x^4+1$. If $E$ is the splitting field for $f$ over $F$, it turns out that $E$ is a simple extension of $F$. How does one realize this fact? I'm not so sure as to what field element I can adjoin to $F$ to allow $f$ to split into linear factors. Finding the splitting field over something like $mathbb{Q}$ is straight forward and easy in comparison, but I'm having trouble working with any general field $F$.
Also, if we indeed did have that $0=2$ in our field $F$, then $f=x^4+1=(x+1)^4$, so $F$ is its own splitting field, is this correct reasoning?
abstract-algebra field-theory extension-field splitting-field
$endgroup$
add a comment |
$begingroup$
Let $F$ be a field in which $0 neq2$ in $F$, and consider $f=x^4+1$. If $E$ is the splitting field for $f$ over $F$, it turns out that $E$ is a simple extension of $F$. How does one realize this fact? I'm not so sure as to what field element I can adjoin to $F$ to allow $f$ to split into linear factors. Finding the splitting field over something like $mathbb{Q}$ is straight forward and easy in comparison, but I'm having trouble working with any general field $F$.
Also, if we indeed did have that $0=2$ in our field $F$, then $f=x^4+1=(x+1)^4$, so $F$ is its own splitting field, is this correct reasoning?
abstract-algebra field-theory extension-field splitting-field
$endgroup$
2
$begingroup$
Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
$endgroup$
– Mike Earnest
58 mins ago
add a comment |
$begingroup$
Let $F$ be a field in which $0 neq2$ in $F$, and consider $f=x^4+1$. If $E$ is the splitting field for $f$ over $F$, it turns out that $E$ is a simple extension of $F$. How does one realize this fact? I'm not so sure as to what field element I can adjoin to $F$ to allow $f$ to split into linear factors. Finding the splitting field over something like $mathbb{Q}$ is straight forward and easy in comparison, but I'm having trouble working with any general field $F$.
Also, if we indeed did have that $0=2$ in our field $F$, then $f=x^4+1=(x+1)^4$, so $F$ is its own splitting field, is this correct reasoning?
abstract-algebra field-theory extension-field splitting-field
$endgroup$
Let $F$ be a field in which $0 neq2$ in $F$, and consider $f=x^4+1$. If $E$ is the splitting field for $f$ over $F$, it turns out that $E$ is a simple extension of $F$. How does one realize this fact? I'm not so sure as to what field element I can adjoin to $F$ to allow $f$ to split into linear factors. Finding the splitting field over something like $mathbb{Q}$ is straight forward and easy in comparison, but I'm having trouble working with any general field $F$.
Also, if we indeed did have that $0=2$ in our field $F$, then $f=x^4+1=(x+1)^4$, so $F$ is its own splitting field, is this correct reasoning?
abstract-algebra field-theory extension-field splitting-field
abstract-algebra field-theory extension-field splitting-field
asked 1 hour ago
DevilofHell'sKitchenDevilofHell'sKitchen
405
405
2
$begingroup$
Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
$endgroup$
– Mike Earnest
58 mins ago
add a comment |
2
$begingroup$
Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
$endgroup$
– Mike Earnest
58 mins ago
2
2
$begingroup$
Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
$endgroup$
– Mike Earnest
58 mins ago
$begingroup$
Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
$endgroup$
– Mike Earnest
58 mins ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.
$endgroup$
2
$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
50 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147449%2fextension-of-splitting-fields-over-an-arbitrary-field%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.
$endgroup$
2
$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
50 mins ago
add a comment |
$begingroup$
If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.
$endgroup$
2
$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
50 mins ago
add a comment |
$begingroup$
If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.
$endgroup$
If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.
answered 1 hour ago
lhflhf
166k10171400
166k10171400
2
$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
50 mins ago
add a comment |
2
$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
50 mins ago
2
2
$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
50 mins ago
$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
50 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147449%2fextension-of-splitting-fields-over-an-arbitrary-field%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
$endgroup$
– Mike Earnest
58 mins ago