How to calculate this simple integral?Asymptotic solution to the integral $int_{-pi/2}^{pi/2} (alpha + sin...
How to deal with an underperforming subordinate?
Why do neural networks need so many examples to perform?
Was there a pre-determined arrangement for the division of Germany in case it surrendered before any Soviet forces entered its territory?
How unreachable are Jupiter's moons from Mars with the technology developed for going to Mars?
What are some ways of extending a description of a scenery?
Word for something that's always reliable, but never the best?
How can I automatically launch GPSD on startup?
What is a good way to explain how a character can produce flames from their body?
How to not let the Identify spell spoil everything?
How can find the 2D Voronoi cell area distribution?
Specific list manipulation
Can me and my friend spend the summer in Canada (6 weeks) at 16 years old without an adult?
Why 偏 has a meaning of partial?
How do I avoid the "chosen hero" feeling?
Why do single electrical receptacles exist?
Homeostasis logic/math problem
Create linguistic diagram (in TikZ?)
Players preemptively rolling, even though their rolls are useless or are checking the wrong skills
How to put text above column in minipage?
How can I deduce the power of a capacitor from its datasheet?
How to align the top of the text with the top of a figure produced by tikz in minipage
How bad is a Computer Science course that doesn't teach Design Patterns?
If I tried and failed to start my own business, how do I apply for a job without job experience?
"Starve to death" Vs. "Starve to the point of death"
How to calculate this simple integral?
Asymptotic solution to the integral $int_{-pi/2}^{pi/2} (alpha + sin x)^n cos^2 x,mathrm{d}x$How to calculate the Fourier transform?Green's Function and Discontinuous SourceCalculate the integral for the arc length of $y = frac{e^x + e^{-x}}2$ from $-1$ to $1$Green's function Laplace equation through Fourier spaceHow do I evaluate this integral in the complex plane?How to test this improper integral for convergence?How to compute this integral involving trig?Is there a special function defined for this integral?Definite Integral of an Infinite Sum
$begingroup$
How to calculate this elementary complex integral? This is what we would encounter if we are studying the Green's function for Schroedinger's equation.
$$int_{-infty}^infty e^{-ix^2}d x=?$$
However, I think there should be someone that posted similar question on Math SE, though I don't know how to search by equation.
Thank you very much if you can help me out! And I would be grateful if you can give more than one approach
P.S.: The equation $int _{-infty}^{infty}e^{-kt^2}d sqrt{k}t=sqrt{pi}$ surely comes to my mind, but I don't know why it holds for $kinmathbb{C}$, because for me, the above integral is over real line, however, the question here is like integral on $y=e^{i pi/4}x$ ( So I think it's the problem with my complex integral knowledge.)
I tried to rotate this integral path by $pi/4$, but the two arcs at $Rrightarrow infty$ seem not easy to handle either.
integration quantum-mechanics greens-function
$endgroup$
add a comment |
$begingroup$
How to calculate this elementary complex integral? This is what we would encounter if we are studying the Green's function for Schroedinger's equation.
$$int_{-infty}^infty e^{-ix^2}d x=?$$
However, I think there should be someone that posted similar question on Math SE, though I don't know how to search by equation.
Thank you very much if you can help me out! And I would be grateful if you can give more than one approach
P.S.: The equation $int _{-infty}^{infty}e^{-kt^2}d sqrt{k}t=sqrt{pi}$ surely comes to my mind, but I don't know why it holds for $kinmathbb{C}$, because for me, the above integral is over real line, however, the question here is like integral on $y=e^{i pi/4}x$ ( So I think it's the problem with my complex integral knowledge.)
I tried to rotate this integral path by $pi/4$, but the two arcs at $Rrightarrow infty$ seem not easy to handle either.
integration quantum-mechanics greens-function
$endgroup$
$begingroup$
Hi Collin - Welcome to MSE - in order for the community to be able to assist you, you need to provide all working you have done so far. If you are looking for a starting point, please ask - but this site is not a 'homework for free' site.
$endgroup$
– DavidG
2 hours ago
1
$begingroup$
Hint: This is all you need to solve: $$ int_{-infty}^infty e^{-x^2}:dx = sqrt{pi}$$
$endgroup$
– DavidG
2 hours ago
$begingroup$
Assuming the jump into the complex domain is valid. I always do.
$endgroup$
– marty cohen
37 mins ago
add a comment |
$begingroup$
How to calculate this elementary complex integral? This is what we would encounter if we are studying the Green's function for Schroedinger's equation.
$$int_{-infty}^infty e^{-ix^2}d x=?$$
However, I think there should be someone that posted similar question on Math SE, though I don't know how to search by equation.
Thank you very much if you can help me out! And I would be grateful if you can give more than one approach
P.S.: The equation $int _{-infty}^{infty}e^{-kt^2}d sqrt{k}t=sqrt{pi}$ surely comes to my mind, but I don't know why it holds for $kinmathbb{C}$, because for me, the above integral is over real line, however, the question here is like integral on $y=e^{i pi/4}x$ ( So I think it's the problem with my complex integral knowledge.)
I tried to rotate this integral path by $pi/4$, but the two arcs at $Rrightarrow infty$ seem not easy to handle either.
integration quantum-mechanics greens-function
$endgroup$
How to calculate this elementary complex integral? This is what we would encounter if we are studying the Green's function for Schroedinger's equation.
$$int_{-infty}^infty e^{-ix^2}d x=?$$
However, I think there should be someone that posted similar question on Math SE, though I don't know how to search by equation.
Thank you very much if you can help me out! And I would be grateful if you can give more than one approach
P.S.: The equation $int _{-infty}^{infty}e^{-kt^2}d sqrt{k}t=sqrt{pi}$ surely comes to my mind, but I don't know why it holds for $kinmathbb{C}$, because for me, the above integral is over real line, however, the question here is like integral on $y=e^{i pi/4}x$ ( So I think it's the problem with my complex integral knowledge.)
I tried to rotate this integral path by $pi/4$, but the two arcs at $Rrightarrow infty$ seem not easy to handle either.
integration quantum-mechanics greens-function
integration quantum-mechanics greens-function
edited 1 min ago
Collin
asked 2 hours ago
CollinCollin
1377
1377
$begingroup$
Hi Collin - Welcome to MSE - in order for the community to be able to assist you, you need to provide all working you have done so far. If you are looking for a starting point, please ask - but this site is not a 'homework for free' site.
$endgroup$
– DavidG
2 hours ago
1
$begingroup$
Hint: This is all you need to solve: $$ int_{-infty}^infty e^{-x^2}:dx = sqrt{pi}$$
$endgroup$
– DavidG
2 hours ago
$begingroup$
Assuming the jump into the complex domain is valid. I always do.
$endgroup$
– marty cohen
37 mins ago
add a comment |
$begingroup$
Hi Collin - Welcome to MSE - in order for the community to be able to assist you, you need to provide all working you have done so far. If you are looking for a starting point, please ask - but this site is not a 'homework for free' site.
$endgroup$
– DavidG
2 hours ago
1
$begingroup$
Hint: This is all you need to solve: $$ int_{-infty}^infty e^{-x^2}:dx = sqrt{pi}$$
$endgroup$
– DavidG
2 hours ago
$begingroup$
Assuming the jump into the complex domain is valid. I always do.
$endgroup$
– marty cohen
37 mins ago
$begingroup$
Hi Collin - Welcome to MSE - in order for the community to be able to assist you, you need to provide all working you have done so far. If you are looking for a starting point, please ask - but this site is not a 'homework for free' site.
$endgroup$
– DavidG
2 hours ago
$begingroup$
Hi Collin - Welcome to MSE - in order for the community to be able to assist you, you need to provide all working you have done so far. If you are looking for a starting point, please ask - but this site is not a 'homework for free' site.
$endgroup$
– DavidG
2 hours ago
1
1
$begingroup$
Hint: This is all you need to solve: $$ int_{-infty}^infty e^{-x^2}:dx = sqrt{pi}$$
$endgroup$
– DavidG
2 hours ago
$begingroup$
Hint: This is all you need to solve: $$ int_{-infty}^infty e^{-x^2}:dx = sqrt{pi}$$
$endgroup$
– DavidG
2 hours ago
$begingroup$
Assuming the jump into the complex domain is valid. I always do.
$endgroup$
– marty cohen
37 mins ago
$begingroup$
Assuming the jump into the complex domain is valid. I always do.
$endgroup$
– marty cohen
37 mins ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Hint
$$int e^{-k x^2},dx=frac{sqrt{pi } }{2 sqrt{k}},text{erf}left(sqrt{k} xright)$$
$$f(k)=int_{-infty}^infty e^{-k x^2},dx=frac{sqrt{pi }}{sqrt{k}}$$
$$f(i)=frac{sqrt{pi }}{sqrt{i}}=(1-i) sqrt{frac{pi }{2}}$$
$endgroup$
$begingroup$
Hi! I think it's because I'm not familiar with complex integral; so how can you guys play so freely on the $mathbb{C}$ plane, without worrying much? The very reason I ask this is because I don't know why your second equation holds for k being a complex number. I tried to rotate this integral path by $pi/4$ on the complex plane, but the two arcs at $|x|rightarrow infty$ seem not trying to vanish.
$endgroup$
– Collin
15 mins ago
add a comment |
$begingroup$
Trying to avoid complex funniness.
$begin{array}\
int_{-infty}^infty e^{-ix^2}dx
&=int_{-infty}^infty (cos(x^2)-isin(x^2))dx\
&=2int_{0}^infty (cos(x^2)-isin(x^2))dx\
&=2int_{0}^infty cos(x^2)dx-2iint_{0}^inftysin(x^2))dx\
end{array}
$
and these are the
Fresnel integrals
$C(x)$ and $S(x)$
both of which approach
$dfrac{sqrt{pi}}{8}
$
as $x to infty$.
Therefore the result is
$(1-i)sqrt{frac{pi}{2}}
$
as Claude Leibovici
got.
$endgroup$
add a comment |
$begingroup$
Hint:$$int_{-infty}^infty e^{-kx^2}dx=int_{-infty}^infty e^{-left(xsqrt kright)^2}dx$$
Use the $u$-substution $u=xsqrt k$ and this transforms the integral into the form given in DavidG's suggestion. Can you take it from here?
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3125571%2fhow-to-calculate-this-simple-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint
$$int e^{-k x^2},dx=frac{sqrt{pi } }{2 sqrt{k}},text{erf}left(sqrt{k} xright)$$
$$f(k)=int_{-infty}^infty e^{-k x^2},dx=frac{sqrt{pi }}{sqrt{k}}$$
$$f(i)=frac{sqrt{pi }}{sqrt{i}}=(1-i) sqrt{frac{pi }{2}}$$
$endgroup$
$begingroup$
Hi! I think it's because I'm not familiar with complex integral; so how can you guys play so freely on the $mathbb{C}$ plane, without worrying much? The very reason I ask this is because I don't know why your second equation holds for k being a complex number. I tried to rotate this integral path by $pi/4$ on the complex plane, but the two arcs at $|x|rightarrow infty$ seem not trying to vanish.
$endgroup$
– Collin
15 mins ago
add a comment |
$begingroup$
Hint
$$int e^{-k x^2},dx=frac{sqrt{pi } }{2 sqrt{k}},text{erf}left(sqrt{k} xright)$$
$$f(k)=int_{-infty}^infty e^{-k x^2},dx=frac{sqrt{pi }}{sqrt{k}}$$
$$f(i)=frac{sqrt{pi }}{sqrt{i}}=(1-i) sqrt{frac{pi }{2}}$$
$endgroup$
$begingroup$
Hi! I think it's because I'm not familiar with complex integral; so how can you guys play so freely on the $mathbb{C}$ plane, without worrying much? The very reason I ask this is because I don't know why your second equation holds for k being a complex number. I tried to rotate this integral path by $pi/4$ on the complex plane, but the two arcs at $|x|rightarrow infty$ seem not trying to vanish.
$endgroup$
– Collin
15 mins ago
add a comment |
$begingroup$
Hint
$$int e^{-k x^2},dx=frac{sqrt{pi } }{2 sqrt{k}},text{erf}left(sqrt{k} xright)$$
$$f(k)=int_{-infty}^infty e^{-k x^2},dx=frac{sqrt{pi }}{sqrt{k}}$$
$$f(i)=frac{sqrt{pi }}{sqrt{i}}=(1-i) sqrt{frac{pi }{2}}$$
$endgroup$
Hint
$$int e^{-k x^2},dx=frac{sqrt{pi } }{2 sqrt{k}},text{erf}left(sqrt{k} xright)$$
$$f(k)=int_{-infty}^infty e^{-k x^2},dx=frac{sqrt{pi }}{sqrt{k}}$$
$$f(i)=frac{sqrt{pi }}{sqrt{i}}=(1-i) sqrt{frac{pi }{2}}$$
answered 1 hour ago
Claude LeiboviciClaude Leibovici
122k1157134
122k1157134
$begingroup$
Hi! I think it's because I'm not familiar with complex integral; so how can you guys play so freely on the $mathbb{C}$ plane, without worrying much? The very reason I ask this is because I don't know why your second equation holds for k being a complex number. I tried to rotate this integral path by $pi/4$ on the complex plane, but the two arcs at $|x|rightarrow infty$ seem not trying to vanish.
$endgroup$
– Collin
15 mins ago
add a comment |
$begingroup$
Hi! I think it's because I'm not familiar with complex integral; so how can you guys play so freely on the $mathbb{C}$ plane, without worrying much? The very reason I ask this is because I don't know why your second equation holds for k being a complex number. I tried to rotate this integral path by $pi/4$ on the complex plane, but the two arcs at $|x|rightarrow infty$ seem not trying to vanish.
$endgroup$
– Collin
15 mins ago
$begingroup$
Hi! I think it's because I'm not familiar with complex integral; so how can you guys play so freely on the $mathbb{C}$ plane, without worrying much? The very reason I ask this is because I don't know why your second equation holds for k being a complex number. I tried to rotate this integral path by $pi/4$ on the complex plane, but the two arcs at $|x|rightarrow infty$ seem not trying to vanish.
$endgroup$
– Collin
15 mins ago
$begingroup$
Hi! I think it's because I'm not familiar with complex integral; so how can you guys play so freely on the $mathbb{C}$ plane, without worrying much? The very reason I ask this is because I don't know why your second equation holds for k being a complex number. I tried to rotate this integral path by $pi/4$ on the complex plane, but the two arcs at $|x|rightarrow infty$ seem not trying to vanish.
$endgroup$
– Collin
15 mins ago
add a comment |
$begingroup$
Trying to avoid complex funniness.
$begin{array}\
int_{-infty}^infty e^{-ix^2}dx
&=int_{-infty}^infty (cos(x^2)-isin(x^2))dx\
&=2int_{0}^infty (cos(x^2)-isin(x^2))dx\
&=2int_{0}^infty cos(x^2)dx-2iint_{0}^inftysin(x^2))dx\
end{array}
$
and these are the
Fresnel integrals
$C(x)$ and $S(x)$
both of which approach
$dfrac{sqrt{pi}}{8}
$
as $x to infty$.
Therefore the result is
$(1-i)sqrt{frac{pi}{2}}
$
as Claude Leibovici
got.
$endgroup$
add a comment |
$begingroup$
Trying to avoid complex funniness.
$begin{array}\
int_{-infty}^infty e^{-ix^2}dx
&=int_{-infty}^infty (cos(x^2)-isin(x^2))dx\
&=2int_{0}^infty (cos(x^2)-isin(x^2))dx\
&=2int_{0}^infty cos(x^2)dx-2iint_{0}^inftysin(x^2))dx\
end{array}
$
and these are the
Fresnel integrals
$C(x)$ and $S(x)$
both of which approach
$dfrac{sqrt{pi}}{8}
$
as $x to infty$.
Therefore the result is
$(1-i)sqrt{frac{pi}{2}}
$
as Claude Leibovici
got.
$endgroup$
add a comment |
$begingroup$
Trying to avoid complex funniness.
$begin{array}\
int_{-infty}^infty e^{-ix^2}dx
&=int_{-infty}^infty (cos(x^2)-isin(x^2))dx\
&=2int_{0}^infty (cos(x^2)-isin(x^2))dx\
&=2int_{0}^infty cos(x^2)dx-2iint_{0}^inftysin(x^2))dx\
end{array}
$
and these are the
Fresnel integrals
$C(x)$ and $S(x)$
both of which approach
$dfrac{sqrt{pi}}{8}
$
as $x to infty$.
Therefore the result is
$(1-i)sqrt{frac{pi}{2}}
$
as Claude Leibovici
got.
$endgroup$
Trying to avoid complex funniness.
$begin{array}\
int_{-infty}^infty e^{-ix^2}dx
&=int_{-infty}^infty (cos(x^2)-isin(x^2))dx\
&=2int_{0}^infty (cos(x^2)-isin(x^2))dx\
&=2int_{0}^infty cos(x^2)dx-2iint_{0}^inftysin(x^2))dx\
end{array}
$
and these are the
Fresnel integrals
$C(x)$ and $S(x)$
both of which approach
$dfrac{sqrt{pi}}{8}
$
as $x to infty$.
Therefore the result is
$(1-i)sqrt{frac{pi}{2}}
$
as Claude Leibovici
got.
answered 38 mins ago
marty cohenmarty cohen
73.9k549128
73.9k549128
add a comment |
add a comment |
$begingroup$
Hint:$$int_{-infty}^infty e^{-kx^2}dx=int_{-infty}^infty e^{-left(xsqrt kright)^2}dx$$
Use the $u$-substution $u=xsqrt k$ and this transforms the integral into the form given in DavidG's suggestion. Can you take it from here?
$endgroup$
add a comment |
$begingroup$
Hint:$$int_{-infty}^infty e^{-kx^2}dx=int_{-infty}^infty e^{-left(xsqrt kright)^2}dx$$
Use the $u$-substution $u=xsqrt k$ and this transforms the integral into the form given in DavidG's suggestion. Can you take it from here?
$endgroup$
add a comment |
$begingroup$
Hint:$$int_{-infty}^infty e^{-kx^2}dx=int_{-infty}^infty e^{-left(xsqrt kright)^2}dx$$
Use the $u$-substution $u=xsqrt k$ and this transforms the integral into the form given in DavidG's suggestion. Can you take it from here?
$endgroup$
Hint:$$int_{-infty}^infty e^{-kx^2}dx=int_{-infty}^infty e^{-left(xsqrt kright)^2}dx$$
Use the $u$-substution $u=xsqrt k$ and this transforms the integral into the form given in DavidG's suggestion. Can you take it from here?
answered 41 mins ago
csch2csch2
2571311
2571311
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3125571%2fhow-to-calculate-this-simple-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hi Collin - Welcome to MSE - in order for the community to be able to assist you, you need to provide all working you have done so far. If you are looking for a starting point, please ask - but this site is not a 'homework for free' site.
$endgroup$
– DavidG
2 hours ago
1
$begingroup$
Hint: This is all you need to solve: $$ int_{-infty}^infty e^{-x^2}:dx = sqrt{pi}$$
$endgroup$
– DavidG
2 hours ago
$begingroup$
Assuming the jump into the complex domain is valid. I always do.
$endgroup$
– marty cohen
37 mins ago