Is there a non trivial covering of the Klein bottle by the Klein bottleHow to calculate all the subgroups of...

How to fly a direct entry holding pattern when approaching from an awkward angle?

Fraction within another fraction

What does an unprocessed RAW file look like?

Insecure private-key encryption

How can I handle players killing my NPC outside of combat?

Writing dialogues for characters whose first language is not English

Was there a pre-determined arrangement for the division of Germany in case it surrendered before any Soviet forces entered its territory?

Other than edits for international editions, did Harry Potter and the Philosopher's Stone receive errata?

How much light is too much?

Is there any danger of my neighbor having my wife's signature?

The relationship between entanglement of vector states to matrix operations

What can I do to encourage my players to use their consumables?

Is the percentage symbol a constant?

How to put text above column in minipage?

Where does documentation like business and software requirement spec docs fit in an agile project?

Co-worker sabotaging/undoing my work. (Software Development)

What is an efficient way to digitize a family photo collection?

What is a good way to explain how a character can produce flames from their body?

Identical projects by students at two different colleges: still plagiarism?

Was Claire Dearing blamed for any of Jurassic World's failings?

Is it possible to detect 100% of SQLi with a simple regex?

Sensor logger for Raspberry Pi in a stratospheric probe

Crack the bank account's password!

Growth of Mordell-Weil Rank of Elliptic Curves over Field Extensions



Is there a non trivial covering of the Klein bottle by the Klein bottle


How to calculate all the subgroups of the fundamental group of the Klein bottle?Torus as double cover of the Klein bottleThe double cover of Klein bottleNon-normal covering of a Klein bottle by torus.Topology on Klein bottle?Klein-bottle and Möbius-strip together with a homeomorphismHomeomorphism of Klein BottleKlein bottle covered by the torusEmbed Torus into Klein BottleKlein bottle and torus in mod $p$ homology













1












$begingroup$


Let K be the Klein bottle obtained by the quotient of $[0, 1] × [0; 1]$
by the equivalence relation $(x, 0) ∼ (1 − x, 1)$ and $(0, y) ∼ (1, y)$.



Is there a non trivial covering of $K$ by $K$?



The universal cover of $K$ is $Bbb R^2$ and I know the torus can also be a cover of $K$, but I don't know where to start.



Thank you for any hints and help.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Let K be the Klein bottle obtained by the quotient of $[0, 1] × [0; 1]$
    by the equivalence relation $(x, 0) ∼ (1 − x, 1)$ and $(0, y) ∼ (1, y)$.



    Is there a non trivial covering of $K$ by $K$?



    The universal cover of $K$ is $Bbb R^2$ and I know the torus can also be a cover of $K$, but I don't know where to start.



    Thank you for any hints and help.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Let K be the Klein bottle obtained by the quotient of $[0, 1] × [0; 1]$
      by the equivalence relation $(x, 0) ∼ (1 − x, 1)$ and $(0, y) ∼ (1, y)$.



      Is there a non trivial covering of $K$ by $K$?



      The universal cover of $K$ is $Bbb R^2$ and I know the torus can also be a cover of $K$, but I don't know where to start.



      Thank you for any hints and help.










      share|cite|improve this question









      $endgroup$




      Let K be the Klein bottle obtained by the quotient of $[0, 1] × [0; 1]$
      by the equivalence relation $(x, 0) ∼ (1 − x, 1)$ and $(0, y) ∼ (1, y)$.



      Is there a non trivial covering of $K$ by $K$?



      The universal cover of $K$ is $Bbb R^2$ and I know the torus can also be a cover of $K$, but I don't know where to start.



      Thank you for any hints and help.







      general-topology algebraic-topology klein-bottle






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 hours ago









      PerelManPerelMan

      629312




      629312






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          The Klein bottle is the quotient of $mathbb{R}^2$ by the group $G$ generated by $u(x,y)=(1-x,y)$ and $v(x,y)=(x,y+1)$Consider $f(x,y)=(x,2y)$ $fcirc u(x,y)=f(1-x,y)=(1-x,2y)=ucirc f(x,y)$.



          $fcirc v(x,y)=f(x,y+1)=(x,2y+2)=v^2circ f$. This implies that $f$ induces a continuous map of $mathbb{R}^2/G$ this map is a covering of order $2$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            this is a cover of the Klein bottle by the Torus right? or it is a cover by the Klein bottle?
            $endgroup$
            – PerelMan
            34 mins ago





















          2












          $begingroup$

          One way you can envision the two-fold cover of $K$ by the torus by placing two copies of the given square next to each other such that the $(x,0)$ side of one is touching the $(x,1)$ side of the other. To check that this translates to a well-defined map $Tto K$ is fairly straightforward.



          This can be extended to a 3-fold cover of $K$ by itself if you place three such squares next to each other (or more generally for any odd $n$).






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3125520%2fis-there-a-non-trivial-covering-of-the-klein-bottle-by-the-klein-bottle%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            The Klein bottle is the quotient of $mathbb{R}^2$ by the group $G$ generated by $u(x,y)=(1-x,y)$ and $v(x,y)=(x,y+1)$Consider $f(x,y)=(x,2y)$ $fcirc u(x,y)=f(1-x,y)=(1-x,2y)=ucirc f(x,y)$.



            $fcirc v(x,y)=f(x,y+1)=(x,2y+2)=v^2circ f$. This implies that $f$ induces a continuous map of $mathbb{R}^2/G$ this map is a covering of order $2$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              this is a cover of the Klein bottle by the Torus right? or it is a cover by the Klein bottle?
              $endgroup$
              – PerelMan
              34 mins ago


















            3












            $begingroup$

            The Klein bottle is the quotient of $mathbb{R}^2$ by the group $G$ generated by $u(x,y)=(1-x,y)$ and $v(x,y)=(x,y+1)$Consider $f(x,y)=(x,2y)$ $fcirc u(x,y)=f(1-x,y)=(1-x,2y)=ucirc f(x,y)$.



            $fcirc v(x,y)=f(x,y+1)=(x,2y+2)=v^2circ f$. This implies that $f$ induces a continuous map of $mathbb{R}^2/G$ this map is a covering of order $2$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              this is a cover of the Klein bottle by the Torus right? or it is a cover by the Klein bottle?
              $endgroup$
              – PerelMan
              34 mins ago
















            3












            3








            3





            $begingroup$

            The Klein bottle is the quotient of $mathbb{R}^2$ by the group $G$ generated by $u(x,y)=(1-x,y)$ and $v(x,y)=(x,y+1)$Consider $f(x,y)=(x,2y)$ $fcirc u(x,y)=f(1-x,y)=(1-x,2y)=ucirc f(x,y)$.



            $fcirc v(x,y)=f(x,y+1)=(x,2y+2)=v^2circ f$. This implies that $f$ induces a continuous map of $mathbb{R}^2/G$ this map is a covering of order $2$.






            share|cite|improve this answer









            $endgroup$



            The Klein bottle is the quotient of $mathbb{R}^2$ by the group $G$ generated by $u(x,y)=(1-x,y)$ and $v(x,y)=(x,y+1)$Consider $f(x,y)=(x,2y)$ $fcirc u(x,y)=f(1-x,y)=(1-x,2y)=ucirc f(x,y)$.



            $fcirc v(x,y)=f(x,y+1)=(x,2y+2)=v^2circ f$. This implies that $f$ induces a continuous map of $mathbb{R}^2/G$ this map is a covering of order $2$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 1 hour ago









            Tsemo AristideTsemo Aristide

            58.7k11445




            58.7k11445












            • $begingroup$
              this is a cover of the Klein bottle by the Torus right? or it is a cover by the Klein bottle?
              $endgroup$
              – PerelMan
              34 mins ago




















            • $begingroup$
              this is a cover of the Klein bottle by the Torus right? or it is a cover by the Klein bottle?
              $endgroup$
              – PerelMan
              34 mins ago


















            $begingroup$
            this is a cover of the Klein bottle by the Torus right? or it is a cover by the Klein bottle?
            $endgroup$
            – PerelMan
            34 mins ago






            $begingroup$
            this is a cover of the Klein bottle by the Torus right? or it is a cover by the Klein bottle?
            $endgroup$
            – PerelMan
            34 mins ago













            2












            $begingroup$

            One way you can envision the two-fold cover of $K$ by the torus by placing two copies of the given square next to each other such that the $(x,0)$ side of one is touching the $(x,1)$ side of the other. To check that this translates to a well-defined map $Tto K$ is fairly straightforward.



            This can be extended to a 3-fold cover of $K$ by itself if you place three such squares next to each other (or more generally for any odd $n$).






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              One way you can envision the two-fold cover of $K$ by the torus by placing two copies of the given square next to each other such that the $(x,0)$ side of one is touching the $(x,1)$ side of the other. To check that this translates to a well-defined map $Tto K$ is fairly straightforward.



              This can be extended to a 3-fold cover of $K$ by itself if you place three such squares next to each other (or more generally for any odd $n$).






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                One way you can envision the two-fold cover of $K$ by the torus by placing two copies of the given square next to each other such that the $(x,0)$ side of one is touching the $(x,1)$ side of the other. To check that this translates to a well-defined map $Tto K$ is fairly straightforward.



                This can be extended to a 3-fold cover of $K$ by itself if you place three such squares next to each other (or more generally for any odd $n$).






                share|cite|improve this answer









                $endgroup$



                One way you can envision the two-fold cover of $K$ by the torus by placing two copies of the given square next to each other such that the $(x,0)$ side of one is touching the $(x,1)$ side of the other. To check that this translates to a well-defined map $Tto K$ is fairly straightforward.



                This can be extended to a 3-fold cover of $K$ by itself if you place three such squares next to each other (or more generally for any odd $n$).







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 1 hour ago









                Rolf HoyerRolf Hoyer

                11.2k31629




                11.2k31629






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3125520%2fis-there-a-non-trivial-covering-of-the-klein-bottle-by-the-klein-bottle%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    ORA-01691 (unable to extend lob segment) even though my tablespace has AUTOEXTEND onORA-01692: unable to...

                    Always On Availability groups resolving state after failover - Remote harden of transaction...

                    Circunscripción electoral de Guipúzcoa Referencias Menú de navegaciónLas claves del sistema electoral en...